$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Application of Random Forests to Association Studies Using Mitochondrial Single Nucleotide Polymorphisms 원문보기

Genomics & informatics, v.5 no.4, 2007년, pp.168 - 173  

Kim, Yoon-Hee (Department of Biostatistics and Epidemiology, School of Public Health, Seoul National University) ,  Kim, Ho (Inherited Disease Research Branch, NHGRI)

Abstract AI-Helper 아이콘AI-Helper

In previous nuclear genomic association studies, Random Forests (RF), one of several up-to-date machine learning methods, has been used successfully to generate evidence of association of genetic polymorphisms with diseases or other phenotypes. Compared with traditional statistical analytic methods,...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • In previous nuclear genomic studies, we hypothesized that RF is appropriate for association studies using mtSNPs with unique characteristics such as haploid number and lack of recombination, unlike nuclear SNPs. To our knowledge, this paper is the first application of RF to investigate the association of mtSNPs with disease. We validate the usage of RF compared with the results from the chi-square test using example data searching the association between mtDNA and type 2 diabetes.

가설 설정

  • 3. Iterate steps 2-1 and 2-2 until the tree is fully grown (no pruning).
  • In this paper, we investigated the feasibility of RF as a tool for detection of association using the mitochondrial genome. Because mtDNA does not undergo recombination, which may lead to a lack of independence between mtSNP sites, RF methods that do not require strong independence assumptions among predictor variables are particularly applicable to mtDNA markers.
본문요약 정보가 도움이 되었나요?

참고문헌 (26)

  1. Bureau, A., Dupuis, J., Falls, K., Lunetta, K.L., Hayward, B., Keith, T.P., and Van Eerdewegh, P. (2005). Identifying SNPs predictive of phenotype using random forests. Genet Epidemiol. 28, 171-82 

  2. Bureau, A., Dupuis, J., Hayward, B., Falls, K., and Van Eerdewegh, P. (2003). Mapping complex traits using Random Forests. BMC Genet. 4 Suppl 1, S64 

  3. Burger, G., Gray, M.W., and Lang, B.F. (2003). Mitochondrial genomes: anything goes. Trends Genet. 19, 709-16 

  4. Chinnery, P.F., Howell, N., Andrews, R.M., and Turnbull, D.M. (1999). Clinical mitochondrial genetics. J Med Genet. 36, 425-36 

  5. Cho, Y.M., Ritchie, M.D., Moore, J.H., Park, J.Y., Lee, K.U., Shin, H.D., Lee, H.K., and Park, K.S. (2004). Multifactor-dimensionality reduction shows a two-locus interaction associated with Type 2 diabetes mellitus. Diabetologia. 47, 549-54 

  6. Diaz-Uriarte, R., and Alvarez de Andres, S. (2006). Gene selection and classification of microarray data using random forest. BMC Bioinformatics. 7, 3 

  7. Grajski, K. A., Breiman, L., Viana Di Prisco, G., and Freeman, W.J. (1986). Classification of EEG spatial patterns with a tree-structured methodology: CART. IEEE Trans Biomed Eng. 33, 1076-86 

  8. Guo, L.J., Oshida, Y., Fuku, N., Takeyasu, T., Fujita, Y., Kurata, M., Sato, Y., Ito, M., and Tanaka, M. (2005). Mitochondrial genome polymorphisms associated with type-2 diabetes or obesity. Mitochondrion. 5, 15-33 

  9. Ingman, M., Kaessmann, H., Paabo, S., and Gyllensten, U. (2000). Mitochondrial genome variation and the origin of modern humans. Nature 408, 708-13 

  10. Kahn, C.R., Vicent, D., and Doria, A. (1996). Genetics of non-insulin-dependent (type-II) diabetes mellitus. Annu Rev Med. 47, 509-31 

  11. Kato, Y., Miura, Y., Inagaki, A., Itatsu, T., and Oiso, Y. (2002). Age of onset possibly associated with the degree of heteroplasmy in two male siblings with diabetes mellitus having an A to G transition at 3243 of mitochondrial DNA. Diabet Med. 19, 784-6 

  12. Ladoukakis, E.D., and Eyre-Walker, A. (2004). Evolutionary genetics: direct evidence of recombination in human mitochondrial DNA. Heredity. 93, 321 

  13. Lee, J.W., Lee, J.B., Park, M., and Song, S.H. (2005). An extensive comparison of recent classification tools applied to microarray data. Comp Stat & Data Analysis. 48, 869-885 

  14. Lunetta, K.L., Hayward, L.B., Segal, J., and Van Eerdewegh, P. (2004). Screening large-scale association study data: exploiting interactions using random forests. BMC Genet. 5, 32 

  15. Matsunaga, H., Tanaka, Y., Tanaka, M., Gong, J.S., Zhang, J., Nomiyama, T., Ogawa, O., Ogihara, T., Yamada, Y., Yagi, K., and Kawamori, R. (2001). Antiatherogenic mitochondrial genotype in patients with type 2 diabetes. Diabetes Care. 24, 500-3 

  16. McKinney, B.A., Reif, D.M., Ritchie, M.D., and Moore, J.H. (2006). Machine learning for detecting gene-gene interactions: a review. Appl Bioinformatics. 5, 77-88 

  17. Mukae, S., Aoki, S., Itoh, S., Sato, R., Nishio, K., Iwata, T., and Katagiri, T. (2003). Mitochondrial 5178A/C genotype is associated with acute myocardial infarction. Circ J. 67, 16-20 

  18. Niemi, A.K., Hervonen, A., Hurme, M., Karhunen, P.J., Jylha, M., and Majamaa, K. (2003). Mitochondrial DNA polymorphisms associated with longevity in a Finnish population. Hum Genet. 112, 29-33 

  19. Nigou, M., Parfait, B., Clauser, E., and Olivier, J.L. (1998). Detection and quantification of the A3243G mutation of mitochondrial DNA by ligation detection reaction. Mol Cell Probes. 12, 273-82 

  20. Ohkubo, K., Yamano, A., Nagashima, M., Mori, Y., Anzai, K., Akehi, Y., Nomiyama, R., Asano, T., Urae, A., and Ono, J. (2001). Mitochondrial gene mutations in the tRNA(Leu(UUR)) region and diabetes: prevalence and clinical phenotypes in Japan. Clin Chem. 47, 1641-8 

  21. Park, H.S., and Lee, S.U. (2004). MitGEN: Single Nucleotide Polymorphism DB Browser for Human Mitochondrial Genome. Genomics & Informatics 2(3), 147-148 

  22. Poulton, J., Luan, J., Macaulay, V., Hennings, S., Mitchell, J., and Wareham, N.J. (2002). Type 2 diabetes is associated with a common mitochondrial variant: evidence from a population-based case-control study. Hum Mol Genet. 11, 1581-3 

  23. Rosenbloom, A.L., Joe, J.R., Young, R.S., and Winter, W.E. (1999). Emerging epidemic of type 2 diabetes in youth. Diabetes Care. 22, 345-54 

  24. Shi, T., Seligson, D., Belldegrun, A.S., Palotie, A., and Horvath, S. (2005). Tumor classification by tissue microarray profiling: random forest clustering applied to renal cell carcinoma. Mod Pathol, 18, 547-57 

  25. Suzuki, S. (2004). Diabetes mellitus with mitochondrial gene mutations in Japan. Ann N Y Acad Sci. 1011, 185-92 

  26. Suzuki, S., Oka, Y., Kadowaki, T., Kanatsuka, A., Kuzuya, T., Kobayashi, M., Sanke, T., Seino, Y., and Nanjo, K. (2003). Clinical features of diabetes mellitus with the mitochondrial DNA 3243 (A-G) mutation in Japanese: maternal inheritance and mitochondria-related complications. Diabetes Res Clin Pract. 59, 207-17 

저자의 다른 논문 :

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로