$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Preparation and Properties of Waterborne Polyurethane-Urea/Poly(vinyl alcohol) Blends for High Water Vapor Permeable Coating Materials 원문보기

Macromolecular research, v.15 no.1, 2007년, pp.22 - 30  

Yun, Jong-Kook (Korea Institute of Footwear & Leather Technology) ,  Yoo, Hye-Jin (Division of Chemical Engineering, Pusan National University) ,  Kim, Han-Do (Division of Chemical Engineering, Pusan National University)

Abstract AI-Helper 아이콘AI-Helper

High water vapor permeable coating materials were prepared by blending aqueous poly(vinyl alcohol) (PVA) solution with waterborne polyurethane-urea (WBPU) dispersions synthesized by prepolymer mixing process. Stable WBPU/PVA dispersions were achieved at PVA content below 30 wt%. As the water soluble...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • As mentioned above, micro-porous structure generally shows higher water vapor permeability. In this study, in order to make direct coated febric to have micro-porous structure, WBPU/PVA were used as coating materials for fabrics, and then water soluble polymer PVA were removed by dissolution ofPVA in water. Waterborne polyurethane-urea (WBPU) was synthesized by prepolymer mixing process using isophorone diisocyanate (IPDI)/2, 2-bis(hydroxymethyl)propionic acid (DMPA)Zpoly (tetramethylene ether) glycol (PTMG)/ethylenediamine (EDA)/triethylamine (TEA) in an emulsion system.
  • Coating materials were prepared by blending WBPU dispersion with aqueous PVA solution. The effect of PVA content on the viscosity of coating materials, and the effects of PVA content and dissolution conditions on the dissolution% of PVA and number/mean size of micro-pores of coating material films were examined. The changes of water vapor permeability of coated Nylon fabrics according to the changes of PVA content and dissolution condition were studied.

대상 데이터

  • ) were dried at 100 ℃ under vacuum (1 ~2 mmHg) for 5 hrs before being used. Dibutyl tin diaurate (DBTDL, Aldrich Chemical Co.), thickener (L75N, Bayer, Germany) and hardener (ARF-30, main component: polyisocyanate, solid content: > 99, NCO%: 20, Dongsung, Busan, Korea) were used without further purification. Poly(vinyl alcohol) (PVA, 99+ hydrolyzed, Mw =89, 000~98, 000, Aldrich Chemical Co.
  • WBPU/water soluble polymer PVA (5, 15, and 30 wt%) blends as coating materials were prepared by blending WBPU dispersion with PVA solution. The coating materials were coated to Nylon fabrics. It was found that the maximum/optimum contents of PVA for stable emulsions were about 30 wt%.
  • Coating to Nylon Fabrics. The coating materials were formulated from WBPU/PVA/thickener (L75N, Bayer)/ hardener or WBPU/PVA/hardener. The WBPU/PVA blend containing high PVA content (30 wt%) showed a high viscosity (> 3, 000 cps).

이론/모형

  • The reaction mixture was allowed to react at 85 ℃ until the theoretical NCO content was reached. The change of NCO content during reaction was determined by the standard dibuthylamine back-titration method (ASTM D1638). Then, methyl ethyl ketone (MEK: about 20 wt%) was added to the NCO-terminated prepolymer mixture to adjust the viscosity of reaction mixture.
  • The samples were coated in conventional manner with a thin layer of gold palladium to prevent changing. The water vapor permeability was determined using an evaporation method described in ASTM E9663-T. The mouth of the test dish is covered with test specimen, and the edges are sealed with sealing material.
본문요약 정보가 도움이 되었나요?

참고문헌 (23)

  1. K. K. S. Hwang, S. L. Cooper, and C. Z Yang, Polym. Eng. Sci., 21, 1027 (1981) 

  2. K. K. S. Hwang, S. L. Cooper, C. Z. Yang, W. R. Laupan, and T. A. Aspeckhard, J. Macromol. Sci. Phys. B., 23, 175 (1984) 

  3. Y. S. Ding, C. Z. Yang, and S. L. Cooper, Polymer, 30, 1204 (1989) 

  4. Y. S. Kwak, E. Y. Kim, B. H. Yoo, and H. D. Kim, J. Appl. Polym. Sci., 94, 1743 (2004) 

  5. S. Subranani, J. M. Lee, and J. H. Kim, Macromol. Res., 13, 418 (2005) 

  6. J. Y. Kwon and H. D. Kim, Macromol. Res., 14, 373 (2006) 

  7. J. W. Rosthauser and K. Nachtkamp, in Advances in Urethane Science and Technology, K. C. Frisch and D. Klempner, Eds., 10, 121 (1987) 

  8. A. Watanabe, Dyeing Ind., 35, 353 (1991) 

  9. Mobay Corp., U.S. Patent 4408008 (1983) 

  10. A. G. Bayer, U.S. Patent 4543144 (1985) 

  11. M. F. Jonkman and P. Bruin, J. Biomater. Appl., 5, 3019 (1990) 

  12. M. S. Yen and K. L. Cheng, J. Appl. Polym. Sci., 52, 1707 (1994) 

  13. Y. S. Kwak and H. D. Kim, Fibers and Polymers, 3, 153 (2002) 

  14. Y. S. Kwak, E.Y. Kim, H. D. Kim, and J. B. Lee, Colloid Polym. Sci., 283, 880 (2005) 

  15. G. R. Lomax, J. Coated. Fabrics, 25, 39 (1995) 

  16. D. I. Schutze and W. Thoma, U.S. Patent 5747582 (1998) 

  17. K. Kuriyama, M. Ichihara, I. Misazu, and I. Kashimura, U.S. Patent 4746684 (1988) 

  18. D. Dieterich, U.S. Patent 4276044 (1981) 

  19. D. Shuttle, U.S. Patent 5840812 (1998) 

  20. S. Hayashi, N. Ishikawa, and C. Giordano, J. Coated Fabrics, 23, 74 (1993) 

  21. I. Yilgor and E. Yilgor, Polymer, 40, 5575 (1999) 

  22. Y. S. Kwak and H. D. Kim, Fibers and Polymers, 3, 153 (2002) 

  23. Y. M. Kim, T. K. Kim, and B. K. Kim, Polym. Int., 23, 157 (1992) 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로