$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Evaluation of Advanced Structure-Based Virtual Screening Methods for Computer-Aided Drug Discovery 원문보기

Genomics & informatics, v.5 no.1, 2007년, pp.24 - 29  

Lee, Hui-Sun (Department of Biological Sciences, Research Center for Women’s Diseases (RCWD), Sookmyung Women’s University) ,  Choi, Ji-Won (Department of Biological Sciences, Research Center for Women’s Diseases (RCWD), Sookmyung Women’s University) ,  Yoon, Suk-Joon (1Department of Biological Sciences, Research Center for Women’s Diseases (RCWD), Sookmyung Women’s University)

Abstract AI-Helper 아이콘AI-Helper

Computational virtual screening has become an essential platform of drug discovery for the efficient identification of active candidates. Moleculardocking, a key technology of receptor-centric virtual screening, is commonly used to predict the binding affinities of chemical compounds on target recep...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • eMBrAcE applies multiple minimizations, during which each of the specified pre-positioned ligands is minimized with the receptor. Forthe energy-minimized structures, the calculation is performed first on the receptor (Epra 어 n), then on the ligand (£焼扁), and finally on the complex (Eqbx). The energy difference is then calculated as:
  • Various descriptors extracted from the structural information on ligand-receptor complex may provide an advantageous solution to creating a reliable binding-affinity-prediction model. Here, we combined the results obtained from a standard docking protocol with data from three different structure-based descriptors, and then investigated the utility of these descriptors on the virtual screening efficiency for ERa ligands (Fig. 1). The virtual screening efficiency was compared using an analysis of receiver operating characteristic (ROC) curves (Hand ef al.
  • The authors gratefully acknowledge Dr. Weida Tong (National Center for Toxicological Research, U.S. Food & Drug Administration, Jefferson, AR) for providing the experimental data set and 2D structures of Estrogen Receptor compounds which were used in this study. This research was supported by Sookmyung Women's University Research Grants 1-0603-0020.
  • Two receptor co-crystal structures, estrogen receptor a (ERa, PDB entry: 3ERD) and peroxisome proliferatoractivated receptory(PPARy, PDB entry: 1KNU), both of which belong to the nuclear receptor superfamily, were used in this study. The coordinates for these proteins were obtained from the RCSB Protein Data Bank (http://w\aaa/.

이론/모형

  • TheeMBrAcE, Prime MM-GBSAand Liaison calculations were performed using the 니gand & Structure-Based Descriptors (LSBD) application of the Schrodinger sothAare package. These calculations w려*e applied the ligand-receptor complex structures obtained from Glide docking.
본문요약 정보가 도움이 되었나요?

참고문헌 (19)

  1. Blair, R. M., Fang, H., Branham, W. S., Hass, B. S., Dial, S. L., Moland, C. L., Tong, W., Shi, L., Perkins, R., and Sheehan, D. M. (2000). The estrogen receptor relative binding affinities of 188 natural and xenochemicals: structural diversity of ligands. Toxicol. Sci. 54, 138-153 

  2. Chen, B., Harrison, R. F., Papadatos, G., Willett, P., Wood, D. J., Lewell, X. Q., Greenidge, P., and Stiefl, N. (2007). Evaluation of machine-learning methods for ligand-based virtual screening. Journal of computer-aided molecular design 21, 53-62 

  3. Cherkasov, A., Ban, F., Li, Y., Fallahi, M., and Hammond, G. L. (2006). Progressive docking: a hybrid QSAR/docking approach for accelerating in silico high throughput screening. Journal of medicinal chemistry 49, 7466-7478 

  4. Cho, A. E., Guallar, V., Berne, B. J., and Friesner, R. (2005). Importance of accurate charges in molecular docking: Quantum mechanical/molecular mechanical (QM/MM) approach. J. Comput. Chem. 26, 915-931 

  5. Cleves, A. E. and Jain, A. N. (2006). Robust ligand-based modeling of the biological targets of known drugs. Journal of medicinal chemistry 49, 2921-2938 

  6. Eldridge, M. D., Murray, C. W., Auton, T. R., Paolini, G. V., and Mee, R. P. (1997). Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. Journal of computer-aided molecular design 11, 425-445 

  7. Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., Repasky, M. P., Knoll, E. H., Shelley, M., Perry, J. K., Shaw, D. E., Francis, P., and Shenkin, P. S. (2004). Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of medicinal chemistry 47, 1739-1749 

  8. Hand, D., Mannila, H., and Smyth, P. (2001). Principles of Data Mining. (Cambridge, Massachsetts: The MIT Press) 

  9. Hawkins, P. C., Skillman, A. G., and Nicholls, A. (2007). Comparison of shape-matching and docking as virtual screening tools. Journal of medicinal chemistry 50, 74-82 

  10. Hong, H., Tong, W., Fang, H., Shi, L., Xie, Q., Wu, J., Perkins, R., Walker, J. D., Branham, W., and Sheehan, D. M. (2002). Prediction of estrogen receptor binding for 58,000 chemicals using an integrated system of a tree-based model with structural alerts. Environmental health perspectives 110, 29-36 

  11. Kitchen, D. B., Decornez, H., Furr, J. R., and Bajorath, J. (2004). Docking and scoring in virtual screening for drug discovery: methods and applications. Nat. Rev. Drug Discov. 3, 935-949 

  12. Klebe, G. (2006). Virtual ligand screening: strategies, perspectives and limitations. Drug Discov. Today 11, 580-594 

  13. Oprea, T.I. and Matter, H. (2004). Integrating virtual screening in lead discovery. Curr. Opin. Chem. Biol. 8, 349-358 

  14. Sousa, S. F., Fernandes, P. A., and Ramos, M. J. (2006). Protein-ligand docking: current status and future challenges. Proteins 65, 15-26 

  15. Stahura, F. L. and Bajorath, J. (2004). Virtual screening methods that complement HTS. Comb. Chem. High Throughput Screen. 7, 259-269 

  16. Warren, G. L., Andrews, C. W., Capelli, A. M., Clarke, B., LaLonde, J., Lambert, M. H., Lindvall, M., Nevins, N., Semus, S. F., Senger, S., Tedesco, G., Wall, I. D., Woolven, J. M., Peishoff, C. E., and Head, M. S. (2006). A critical assessment of docking programs and scoring functions. Journal of medicinal chemistry 49, 5912-5931 

  17. Yoon, S., Smellie, A., Hartsough, D., and Filikov, A. (2005a). Computational identification of proteins for selectivity assays. Proteins 59, 434-443 

  18. Yoon, S., Smellie, A., Hartsough, D., and Filikov, A. (2005b). Surrogate docking: structure-based virtual screening at high throughput speed. Journal of computer-aided molecular design 19, 483-497 

  19. Yoon, S. and Welsh, W. J. (2004). Identification of a minimal subset of receptor conformations for improved multiple conformation docking and two-step scoring. J. Chem. Inf. Comput. Sci. 44, 88-96 

관련 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로