$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Abstract

We define and study a concept of $T^f$-space for a map, which is a generalized one of a T-space, in terms of the Gottlieb set for a map. We show that X is a $T_f$-space if and only if $G({\Sigma}B;A,f,X)=[{\Sigma}B,X]$ for any space B. For a principal fibration $E_k{\rightarrow}X$ induced by $k:X{\rightarrow}X^{\prime}$ from ${\epsilon}:PX^{\prime}{\rightarrow}X^{\prime}$, we obtain a sufficient condition to having a lifting $T^{\bar{f}}$-structure on $E_k$ of a $T^f$-structure on X. Also, we define and study a concept of co-$T^g$-space for a map, which is a dual one of $T^f$-space for a map. We obtain a dual result for a principal cofibration $i_r:X{\rightarrow}C_r$ induced by $r:X^{\prime}{\rightarrow}X$ from ${\iota}:X^{\prime}{\rightarrow}cX^{\prime}$.

저자의 다른 논문

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (1)

  1. 2015. "" 충청수학회지 = Journal of the Chungcheong Mathematical Society, 28(4): 603~614 

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일