최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기BMB reports, v.41 no.6, 2008년, pp.472 - 478
Zang, Yun-Xiang (Department of Molecular Biotechnology, Konkuk University) , Kim, Jong-Hoon (Department of Molecular Biotechnology, Konkuk University) , Park, Young-Doo (Department of Horticultural Biotechnology, Kyunghee University) , Kim, Doo-Hwan (Department of Molecular Biotechnology, Konkuk University) , Hong, Seung-Beom (Department of Molecular Biotechnology, Konkuk University)
Three Arabidopsis cDNAs, MAM1, CYP79F1, and CYP83A1, required for aliphatic glucosinolate biosynthesis were introduced into Chinese cabbage by Agrobacterium tumefaciens-mediated transformation. The transgenic lines overexpressing MAM1 or CYP83A1 showed wild-type phenotypes. However, all the lines ov...
* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.
Osbourn, A. E. (1996) Preformed antimicrobial compounds and plant defense against fungal attack. Plant Cell 8, 1821-1831.
Brader, G., Dalgaard Mikkelsen, M., Halkier, B. A. and Palva, E. T. (2006) Altering glucosinolate profiles modulates disease resistance in plants. Plant J. 46, 758-767.
Giamoustaris, A. and Mithen, R. (1995) The effect of modifying the glucosinolate content of leaves of oilseed rape (Brassica napus ssp. oleifera) on its interaction with specialist and generalist pests. Ann. Appl. Biol. 126, 347-353.
Vaughn, S. F., Palmquist, D. E., Duval, S. M. and Berhow, M. A. (2006) Herbicidal activity of glucosinolate-containing seedmeals. Weed Science 54, 743-748.
Keck, A. S. and Finley, J. W. (2004) Cruciferous vegetables: cancer protective mechanisms of glucosinolate hydrolysis products and selenium. Integr. Cancer Ther. 3, 5-12.
Fahey, J. W., Haristoy, X., Dolan, P. M., Kensler, T. W., Scholtus, I., Stephenson, K. K., Talalay, P. and Lozniewski, A. (2002) Sulforaphane inhibits extracellular, intracellular, and antibiotic-resistant strains of Helicobacter pylori and prevents benzo[ ${\alpha}$ ]pyrene-induced stomach tumors. Proc. Natl. Acad. Sci. U.S.A. 99, 7610-7615.
Gamet-Payrastre, L., Li, P., Lumeau, S., Cassar, G., Dupont, M. A., Chevolleau, S., Gasc, N., Tulliez, J. and Terce, F. (2000) Sulforaphane, a naturally occurring isothiocyanate, induces cell cycle arrest and apoptosis in Ht29 human colon cancer cells. Cancer Res. 60, 1426-1433.
Fahey, J. W., Zalcmann, A. T. and Talalay, P. (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56, 5-51.
Grubb, C. D. and Abel, S. (2006) Glucosinolate metabolism and its control. Trends Plant Sci. 11, 89-100.
Halkier, B. A. and Gershenzon, J. (2006) Biology and Biochemistry of Glucosinolates. Annu. Rev. Plant Biol. 57, 303-333.
Field, B., Cardon, G., Traka, M., Botterman, J., Vancanneyt, G. and Mithen, R. (2004) Glucosinolate and amino acid biosynthesis in Arabidopsis. Plant physiol. 135, 828-839.
Kroymann, J., Textor, S., Tokuhisa, J. G., Falk, K. L., Bartram, S., Gershenzon, J. and Mitchell-Olds, T. (2001) A gene controlling variation in Arabidopsis glucosinolate composition is part of the methionine chain elongation pathway. Plant Physiol. 127, 1077-1088.
Textor, S., de Kraker, J., Hause, B., Gershenzon, J. and Tokuhisa, J. G. (2007) MAM3 catalyzes the formation of all aliphatic glucosinolate chain lengths in Arabidopsis thaliana. Plant Physiol. 144, 60-71.
Chen, S., Glawischnig, E., Jorgensen, K., Naur, P., Jorgensen, B., Olsen, C. E., Hansen, C. H., Rasmussen, H., Pickett, J. A. and Halkier, B. A. (2003) CYP79F1 and CYP79F2 have distinct functions in the biosynthesis of aliphatic glucosinolates in Arabidopsis. Plant J. 33, 923-937.
Tantikanjana, T., Mikkelsen, M. D., Hussain, M., Halkier, B. A. and Sundaresan, V. (2004) Functional analysis of the tandem-duplicated P450 genes SPS/BUS/CYP79F1 and CYP79F2 in glucosinolate biosynthesis and plant development by Ds transposition-generated double mutants. Plant Physiol. 135, 840-848.
Bak, S. and Feyereisen, R. (2001) The involvement of two P450 enzymes, CYP83B1 and CYP83A1, in auxin homeostasis and glucosinolate biosynthesis. Plant Physiol. 127, 108-118.
Hansen, B. G., Kliebenstein, D. J. and Halkier, B. A. (2007) Identification of a flavin-monooxygenase as the S-oxygenating enzyme in aliphatic glucosinolate biosynthesis in Arabidopsis. Plant J. 50, 902-910.
Kliebenstein, D. J., Lambrix, V. M., Reichelt, M., Gershenzon, J. and Mitchell-Olds, T. (2001) Gene duplication in the diversification of secondary metabolism: tandem 2-oxoglutarate- dependent dioxygenases control glucosinolate biosynthesis in Arabidopsis. Plant Cell 13, 681-693.
Kliebenstein, D. J., Kroymann, J., Brown, P., Figuth, A., Pedersen, D., Gershenzon, J. and Mitchell-Olds, T. (2001) Genetic control of natural variation in Arabidopsis glucosinolate accumulation. Plant Physiol. 126, 811-825.
Campos de Quiros, H., Magrath, R., McCallum, D., Kroymann, J., Scnabelrauch, D., Mitchell-Olds, T. and Mithen, R. (2000) ${\alpha}$ -Keto acid elongation and glucosinolate biosynthesis in Arabidopsis thaliana. Theor. Appl. Genet. 101, 429-437.
Kang, J. Y., Ibrahim, K. E., Juvik, J. A., Kim, D. H. and Kang, W. J. (2006) Genetic and environmental variation of glucosinolate content in Chinese cabbage. HortSci. 41, 1382-1385.
Zang, Y. X., Kim, D. H., Lim, M., Park, B. S. and Hong, S. B. (2008) Metabolic engineering of the indole glucosinolates in Chinese cabbage plants expressing Arabidopsis CYP79B2, CYP79B3, and CYP83B1. Mol. Cells. 25(2) (In press).
Hansen, C. H., Wittstock, U., Olsen, C. E., Hick, A. J., Pickett, J. A. and Halkier, B. A. (2001) Cytochrome P450 CYP79F1 from Arabidopsis catalyzes the conversion of dihomomethionine and trihomomethionine to the corresponding aldoximes in the biosynthesis of aliphatic glucosinolates. J. Biol. Chem. 276, 11078-11085.
Reintanz, B., Lehnen, M., Reichelt, M., Gershenzon, J., Kowalczyk, M., Sandberg, G., Godde, M., Uhl, R. and Palme, K. (2001) bus, a bushy Arabidopsis CYP79F1 knockout mutant with abolished synthesis of short-chain aliphatic glucosinolates. Plant Cell 13, 351-367.
Tantikanjana, T., Yong, J. W. H., Letham, D. S., Griffith, M., Ljung, K., Sandberg, G. and Sundaresan, V. (2001) Control of axillary bud initiation and shoot architecture in Arabidopsis through the SUPERSHOOT gene. Genes Dev. 15, 1577-1588.
Haughn, G. W., Davin, L., Giblin, M. and Underhill, E. W. (1991) Biochemical genetics of plant secondary metabolites in Arabidopsis thaliana: the glucosinolates. Plant Physiol. 97, 217-226.
Hemm, M. R., Ruegger, M. O. and Chapple, C. (2003) The Arabidopsis ref2 mutant is defective in the gene encoding CYP83A1 and shows both phenylpropanoid and glucosinolate phenotypes. Plant Cell 15, 179-194.
Shibaoka, H. (1974) Involvement of wall microtubules in gibberllin promotion and kinetin inhibition of stem elongation. Plant Cell Physiol. 15, 255-263.
Mok, D. W. S. and Mok, M. C. (2001) Cytokinin metabolism and action. Annu. Rev. Plant Physiol. Plant Mol. Biol. 89, 89-118.
Holsters, M., De Waele, D., Depicker, A., Messens, E., Van Montagu, M. and Schell, J. (1978) Transfection and transformation of Agrobacterium tumefaciens. Mol. Gen. Genet. 163, 181-187.
Murray, H. G. and Thompson, W. F. (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8, 4321-4325.
Jefferson, R. A. (1987) Assaying chimeric genes in plants: The GUS gene fusion system. Plant Mol. Bio. Rep. 5, 387-405.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.