$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Metabolic engineering of aliphatic glucosinolates in Chinese cabbage plants expressing Arabidopsis MAM1, CYP79F1, and CYP83A1 원문보기

BMB reports, v.41 no.6, 2008년, pp.472 - 478  

Zang, Yun-Xiang (Department of Molecular Biotechnology, Konkuk University) ,  Kim, Jong-Hoon (Department of Molecular Biotechnology, Konkuk University) ,  Park, Young-Doo (Department of Horticultural Biotechnology, Kyunghee University) ,  Kim, Doo-Hwan (Department of Molecular Biotechnology, Konkuk University) ,  Hong, Seung-Beom (Department of Molecular Biotechnology, Konkuk University)

Abstract AI-Helper 아이콘AI-Helper

Three Arabidopsis cDNAs, MAM1, CYP79F1, and CYP83A1, required for aliphatic glucosinolate biosynthesis were introduced into Chinese cabbage by Agrobacterium tumefaciens-mediated transformation. The transgenic lines overexpressing MAM1 or CYP83A1 showed wild-type phenotypes. However, all the lines ov...

Keyword

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

가설 설정

  • (A) wild-type control; (B) M1-1; (C) F1-1; (D) F1-2; (E) F1-3; (F) A1-1; (G) A representative GUS assay for control (left) and transgenic plants (T0 of M1-1, right). (H) A representative fourth rosette leaf from control (left), F1-1 (middle), and F1-2 (right) plants. (I) Wild-type control leaf with thorn (left) and F1-1 leaf without thorn (right).
본문요약 정보가 도움이 되었나요?

참고문헌 (33)

  1. Osbourn, A. E. (1996) Preformed antimicrobial compounds and plant defense against fungal attack. Plant Cell 8, 1821-1831. 

  2. Brader, G., Dalgaard Mikkelsen, M., Halkier, B. A. and Palva, E. T. (2006) Altering glucosinolate profiles modulates disease resistance in plants. Plant J. 46, 758-767. 

  3. Giamoustaris, A. and Mithen, R. (1995) The effect of modifying the glucosinolate content of leaves of oilseed rape (Brassica napus ssp. oleifera) on its interaction with specialist and generalist pests. Ann. Appl. Biol. 126, 347-353. 

  4. Vaughn, S. F., Palmquist, D. E., Duval, S. M. and Berhow, M. A. (2006) Herbicidal activity of glucosinolate-containing seedmeals. Weed Science 54, 743-748. 

  5. Keck, A. S. and Finley, J. W. (2004) Cruciferous vegetables: cancer protective mechanisms of glucosinolate hydrolysis products and selenium. Integr. Cancer Ther. 3, 5-12. 

  6. Fahey, J. W., Haristoy, X., Dolan, P. M., Kensler, T. W., Scholtus, I., Stephenson, K. K., Talalay, P. and Lozniewski, A. (2002) Sulforaphane inhibits extracellular, intracellular, and antibiotic-resistant strains of Helicobacter pylori and prevents benzo[ ${\alpha}$ ]pyrene-induced stomach tumors. Proc. Natl. Acad. Sci. U.S.A. 99, 7610-7615. 

  7. Gamet-Payrastre, L., Li, P., Lumeau, S., Cassar, G., Dupont, M. A., Chevolleau, S., Gasc, N., Tulliez, J. and Terce, F. (2000) Sulforaphane, a naturally occurring isothiocyanate, induces cell cycle arrest and apoptosis in Ht29 human colon cancer cells. Cancer Res. 60, 1426-1433. 

  8. Fahey, J. W., Zalcmann, A. T. and Talalay, P. (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56, 5-51. 

  9. Grubb, C. D. and Abel, S. (2006) Glucosinolate metabolism and its control. Trends Plant Sci. 11, 89-100. 

  10. Halkier, B. A. and Gershenzon, J. (2006) Biology and Biochemistry of Glucosinolates. Annu. Rev. Plant Biol. 57, 303-333. 

  11. Field, B., Cardon, G., Traka, M., Botterman, J., Vancanneyt, G. and Mithen, R. (2004) Glucosinolate and amino acid biosynthesis in Arabidopsis. Plant physiol. 135, 828-839. 

  12. Kroymann, J., Textor, S., Tokuhisa, J. G., Falk, K. L., Bartram, S., Gershenzon, J. and Mitchell-Olds, T. (2001) A gene controlling variation in Arabidopsis glucosinolate composition is part of the methionine chain elongation pathway. Plant Physiol. 127, 1077-1088. 

  13. Textor, S., de Kraker, J., Hause, B., Gershenzon, J. and Tokuhisa, J. G. (2007) MAM3 catalyzes the formation of all aliphatic glucosinolate chain lengths in Arabidopsis thaliana. Plant Physiol. 144, 60-71. 

  14. Chen, S., Glawischnig, E., Jorgensen, K., Naur, P., Jorgensen, B., Olsen, C. E., Hansen, C. H., Rasmussen, H., Pickett, J. A. and Halkier, B. A. (2003) CYP79F1 and CYP79F2 have distinct functions in the biosynthesis of aliphatic glucosinolates in Arabidopsis. Plant J. 33, 923-937. 

  15. Tantikanjana, T., Mikkelsen, M. D., Hussain, M., Halkier, B. A. and Sundaresan, V. (2004) Functional analysis of the tandem-duplicated P450 genes SPS/BUS/CYP79F1 and CYP79F2 in glucosinolate biosynthesis and plant development by Ds transposition-generated double mutants. Plant Physiol. 135, 840-848. 

  16. Bak, S. and Feyereisen, R. (2001) The involvement of two P450 enzymes, CYP83B1 and CYP83A1, in auxin homeostasis and glucosinolate biosynthesis. Plant Physiol. 127, 108-118. 

  17. Hong, B. S., Kim, J. H., Kim, N. Y., Kim, B. G., Chong, Y. and Ahn J. H. (2007) Characterization of uridine-diphosphate dependent flavonoid glucosyltransferase from Oryza sativa. J. Biochem. Mol. Biol. 40, 870-874. 

  18. Hansen, B. G., Kliebenstein, D. J. and Halkier, B. A. (2007) Identification of a flavin-monooxygenase as the S-oxygenating enzyme in aliphatic glucosinolate biosynthesis in Arabidopsis. Plant J. 50, 902-910. 

  19. Kliebenstein, D. J., Lambrix, V. M., Reichelt, M., Gershenzon, J. and Mitchell-Olds, T. (2001) Gene duplication in the diversification of secondary metabolism: tandem 2-oxoglutarate- dependent dioxygenases control glucosinolate biosynthesis in Arabidopsis. Plant Cell 13, 681-693. 

  20. Kliebenstein, D. J., Kroymann, J., Brown, P., Figuth, A., Pedersen, D., Gershenzon, J. and Mitchell-Olds, T. (2001) Genetic control of natural variation in Arabidopsis glucosinolate accumulation. Plant Physiol. 126, 811-825. 

  21. Campos de Quiros, H., Magrath, R., McCallum, D., Kroymann, J., Scnabelrauch, D., Mitchell-Olds, T. and Mithen, R. (2000) ${\alpha}$ -Keto acid elongation and glucosinolate biosynthesis in Arabidopsis thaliana. Theor. Appl. Genet. 101, 429-437. 

  22. Kang, J. Y., Ibrahim, K. E., Juvik, J. A., Kim, D. H. and Kang, W. J. (2006) Genetic and environmental variation of glucosinolate content in Chinese cabbage. HortSci. 41, 1382-1385. 

  23. Zang, Y. X., Kim, D. H., Lim, M., Park, B. S. and Hong, S. B. (2008) Metabolic engineering of the indole glucosinolates in Chinese cabbage plants expressing Arabidopsis CYP79B2, CYP79B3, and CYP83B1. Mol. Cells. 25(2) (In press). 

  24. Hansen, C. H., Wittstock, U., Olsen, C. E., Hick, A. J., Pickett, J. A. and Halkier, B. A. (2001) Cytochrome P450 CYP79F1 from Arabidopsis catalyzes the conversion of dihomomethionine and trihomomethionine to the corresponding aldoximes in the biosynthesis of aliphatic glucosinolates. J. Biol. Chem. 276, 11078-11085. 

  25. Reintanz, B., Lehnen, M., Reichelt, M., Gershenzon, J., Kowalczyk, M., Sandberg, G., Godde, M., Uhl, R. and Palme, K. (2001) bus, a bushy Arabidopsis CYP79F1 knockout mutant with abolished synthesis of short-chain aliphatic glucosinolates. Plant Cell 13, 351-367. 

  26. Tantikanjana, T., Yong, J. W. H., Letham, D. S., Griffith, M., Ljung, K., Sandberg, G. and Sundaresan, V. (2001) Control of axillary bud initiation and shoot architecture in Arabidopsis through the SUPERSHOOT gene. Genes Dev. 15, 1577-1588. 

  27. Haughn, G. W., Davin, L., Giblin, M. and Underhill, E. W. (1991) Biochemical genetics of plant secondary metabolites in Arabidopsis thaliana: the glucosinolates. Plant Physiol. 97, 217-226. 

  28. Hemm, M. R., Ruegger, M. O. and Chapple, C. (2003) The Arabidopsis ref2 mutant is defective in the gene encoding CYP83A1 and shows both phenylpropanoid and glucosinolate phenotypes. Plant Cell 15, 179-194. 

  29. Shibaoka, H. (1974) Involvement of wall microtubules in gibberllin promotion and kinetin inhibition of stem elongation. Plant Cell Physiol. 15, 255-263. 

  30. Mok, D. W. S. and Mok, M. C. (2001) Cytokinin metabolism and action. Annu. Rev. Plant Physiol. Plant Mol. Biol. 89, 89-118. 

  31. Holsters, M., De Waele, D., Depicker, A., Messens, E., Van Montagu, M. and Schell, J. (1978) Transfection and transformation of Agrobacterium tumefaciens. Mol. Gen. Genet. 163, 181-187. 

  32. Murray, H. G. and Thompson, W. F. (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8, 4321-4325. 

  33. Jefferson, R. A. (1987) Assaying chimeric genes in plants: The GUS gene fusion system. Plant Mol. Bio. Rep. 5, 387-405. 

저자의 다른 논문 :

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로