$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

손상된 피부 재건을 위한 바이오인공피부의 개발 동향
Development of Bioartificial Skin for Skin Regeneration 원문보기

한국생물공학회지 = Korean journal of biotechnology and bioengineering, v.23 no.1, 2008년, pp.8 - 17  

서영권 (동국대학교 생명과학연구원) ,  송계용 (중앙대학교 의과대학 병리학교실) ,  박정극 (동국대학교 생명화학공학과)

Abstract AI-Helper 아이콘AI-Helper

There are many different approaches to healing of acute and chronic ulcer and large skin defect, such as burn. Currently available wound covers fall into two categories. Permanent covering, such as autografts, and temporary ones, such as allograft including de-epidermized cadaver skin, bioartificial...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 지금까지 다양한 바이오인공피부에 관련된 연구와 임상적 결과에 대하여 살펴보았다. 초기의 드레싱제로 부터 조직공학 기법으로 제조된 바이오인공피부에 이르기까지 많은 연구자들의 노력에 의해 화상과 욕창 등과 같은 피부질환을 치료하기 위한 결과물들이 개발되었다.
본문요약 정보가 도움이 되었나요?

참고문헌 (71)

  1. Hansbrough, J. F., and E. S. Franco (1998), Skin replacements, Clin. Plast. Surg. 25, 407-423 

  2. Ruszczak, Z., and R. A. Schwartz (2000) , Modem aspects of wound healing, Dermatol. Surg. 26, 219-229 

  3. Horch, R. E., J. Kopp, J. Beier, and A. D. Bach (2005), Tissue engineering of cultured skin substitutes, J. Cell. Mol. 9, 592-608 

  4. Cuono, C., R. Langdon, and J. McGuire (1986), Use of cultured epidermal autografts and dermal allografts as skin replacement after burn injury, Lancet 17,1123-1124 

  5. Abbott, W. M., and J. S. Hembree (1970), Absence of antigenicity in freeze-dried skin allografts, Cryobiology 6, 416-418 

  6. Hussmann, J., R. C. Russell, J. O. Kucan, D. Hebebrand, T. Bradley, and H. U. Steinau (1994), Use of glycerolized human allog rafts as temporary and permanent cover in adult s and children, Burns 20, S61-65 

  7. Kuroyanagi, Y. N., Yamada, R. Yamashita, and E. Uchinurna (2001),Tissue-engineered product: allogenic cultured dermal substitute composed of spongy collagen with fibroblast. Artif. Organs 25, 180-186 

  8. Wainwright, D. J. (1995), Use of acellular allograft dermal matrix (AlIoDarm) in the management of full-thickness burns, Burns 21, 243-248 

  9. Callcut, R. A., M. J. Schurr, M. Sloan, and L. D. Faucher (2006), Clinical experience with Alloderm : a one -staged composite dermal/epidermal replacement utilizing processed cadaver dermis and thin autografts, Burns 32, 583-588 

  10. Rennekampff, H. O ., V. Kiessig, S. Griffey, G. Greenleaf, and J. F. Hansbrough (1997), Acellular human dermis promotes cultured keratinocyte engraftment, J. Burn Care Rehabil. 18, 535-544 

  11. Jasinkowski , N. L., and J. L. Cullum (1984), Human amniotic membrane as a wound dressing, AORN J. 39, 894-895 

  12. Tyszkiewicz, J. T., I. A. Uhrynowska-Tyszkiewicz, A. Kaminski and A. Dziedzic-Goclawska (1999), Amnion allografts prepared in the central tissue bank in warsaw, Ann. Transplant. 4, 85-90 

  13. Quinby W. C., H. C. Hoover, M. Scheflan, P. T. Walters, S. A. Slavin, and C. C. Bondoc (1982), Clinical trials of amniotic membranes in burn wound care, Plast. Reconstr. Surg. 70, 711-717 

  14. Subrahmanyam , M. (1995), Amniotic membrane as a cover for microskin grafts, Br. J. Plast. Surg. 48, 477-478 

  15. Honavar, S. G., S. K. Bansal, V. S. Sangwan, and G. N. Rao (2000), Amniotic membrane transplantation for ocular surface reconstruction in Stevens-Johnson Syndrome, Ophthalmology 107, 975-979 

  16. Kim, J. S., J. C. Kim, B. K. Na, J. M. Jeong, and C. Y. Song (2000), Amniot ic membrane patching promotes healing and inhibits proteinase activity on wound healing following acute corneal alkari burn, Exp. Eye Res. 70, 329-337 

  17. Ward, D. J., J. P. Bennett, H. Burgos, and J. Fabre (1989), The heal ing of chronic venous leg ulcers with prepared human amnion, Br. J. Plast. Surg. 42, 463-467 

  18. Ahn, J. I., I. K. Jang, D. H. Lee, Y. K. Seo, H. H. Yoon, Y. H. Shin, C. H. Kim, K. Y. Song, H. G. Lee, E. K. Yang, K. H. Kim, and J. K. Park (2005), A comparison of lyophilized amniotic membrane with cryopreserved amniotic membrane for the reconstruction of rabbit corneal epithelium. Biotech and Biopro. Eng. 10, 262-269 

  19. Badylak, S. F. (2007), The extracelular matrix as a biologic scaffold material, Biomaterials 28, 3587-3593 

  20. Hodde, J. (2002), Natually occurring scaffolds for soft tissue repair and regeneration. Tissue Eng. 8, 295-308 

  21. Kawai, K, S. Suzuki, Y. Tabata, Y. Ikada, and Y. Nishimura (2000), Accelerated tissue regeneration through incorporation of basic fibroblast growth factor -impregnated gelatin microspheres into artificial dermis. Biomaterials 21, 489-499 

  22. Lin, S. D., C. S. Lai, C. K. Chou, C. W. Tsai, K. F. Wu, and C. W. Chang (1992), Microskin autograft with pigskin xenograft overlay; a preliminary report of studies on patien ts, Burn 18, 321-325 

  23. Basile, A. R. (1982), A comparative study of glycerinized and lyophilized porcine skin in dressings for third-degree burns, Plast. Reconstruct Surg. 69, 969-974 

  24. Madden, M. R., J. L. Finkelstein, L. Staiano-Coico, C. W. Goodwin, G. T. Shires, E. E. Nolan, and J. M. Hefton (1986), Grafting of cultured allogeneic epidermis on second- and third- degree burn wounds on 26 patients, J. Trauma. 26, 955-962 

  25. Phillips, T. J., J. Bhawon, I. M. Leigh, H. J. Baum, and B. A. Gilchrest (1990), Cultured epidermal autografts and allografts: a study of diffe rentiation and allograft survival, J. AM. Acad. Dermatol. 23, 189-198 

  26. Burt, A. M., C. D. Pallett, J. P. Sloane, M. J. O' Hare, K. F. Schafler, P. Yardeni, A. Eldad, J. A. Clarke, and B. A. gusterson (1989), Survival of cultured allografts in patients with bums assessed with probe specific for Y chromosome, BMJ. 298, 915-917 

  27. Aubock, J., E. Irschick E, N. Romani, P. Kompatscher, R. Hopfl, M. Herold, G. Schuler, M. Bauer, C. Huber, and P. Fritsch (1988), Transplantation 45, 730-737 

  28. Horch, R. E., M. Debus, G. Wagner, and G. B. Stark (2006), Cultured human keratinocytes on type I collagen membranes to reconstitute the epidermis, Tissue Eng. 6, 53-67 

  29. Seo, Y. K., J. I. Ahn, D. H. Lee, S. Y. Kwon, D. H. Jung, Y. S. Park, K. Y. Song, E. K. Yang, Y. J. Kim, and J. K. Park (2004), The wound healing effects of human deepithelialized amniotic membrane with skin keratinocyte. Tissue Eng. Regen: Med 1, 178-183 

  30. Kearney, J. N. (2001), Clinical evaluation of skin substitutes, Burns 27, 545-551 

  31. Burke, J. F., I. V. Yannas, W. C. Quinby, C. C. Bondoc, and W. K. Jung (1981), Successful use of a physiologically acceptable artifical skin in the treatment of extensive burn injury, Ann. Surg. 194, 413-428 

  32. Matsui, R., N. Okura, K. Osaki, J. Konishi, K. Ikegami, and M. Koide (1996), Histological evaluation of skin reconstruction using artificial dermis, Biomaterials 17, 995-1000 

  33. Kremer, M., E. Lang , and A. C. Berger (2000 ), Evaluation of dermal-epidermal skin equivalents ('composite-skin') of huma n keratinocytes in a collagen-glycosaminoglycan matrix ( $Integra^{TM}$ Artificial Skin), Br. J. Plast. Surg. 53, 459-465 

  34. Matsui, R., K. Osaki, J. Konishi, K. Ikegami, and M. Koide (1996), Evaluation of an artificial dermis full -thickness skin defect model in the rat, Biomaterials 17, 989-994 

  35. Suzuki , S., K. Kawai, F. Ashoori , N. Morimoto, Y. Nishimura, and Y. Ikada (2000), Long-term follow-up study of artificial dermis composed of outer silicone layer and inner collagen sponge, Br. J. Plast. Surg. 53, 659-666 

  36. Guerret, S., E. Govignon, D. J. Hartmann, and V. Ronfard (2003) Long-term remodeling of a bilayered living human skin equivalent(Apligra $circledR$ ) grafted onto the nude mice : immunolocalization of human cells and characterization of extracellular matrix, Wound Rep. Reg. 11, 35-45 

  37. Naughton, G., J Mansbridge, and G. Gentzkow (1997), A metabolically active human dermal replacement for the treatment of diabetic foot ulcers, Artif. Organs 21, 1203-1210 

  38. Hanbrough, J. F., D. W. Mozingo, P. Kealey, M. Davis, A. Gidner, and G. D. Gentzkow (1997), Clinical trials of a biosynthetic temporary skin replacement, Dennagraft-transitional covering, compared with cryopreserved human cadaver skin for temporarycoverage of excised bum wounds, J. Burn Care Rehabil. 18, 43-51 

  39. Hanbrough, J. F., M. L. Cooper, R. Cohen, R. Spielvogel, G. Greenleaf, R. L. Bartel, and G. Naughton (1992), Evaluation of a biodegradable matrix containing cultured human fibroblasts as a dermal replacement beneath meshed skin grafts on athymic mice. Surgery 111, 438-446 

  40. Sabolinski M. L., O. Alvarez , M. Auletta, G. Mulder , and N. L. Parenteau (1996), Cultured skin as a smart material for healing wounds.experience in venous ulcers, Biomaterials 17, 311-320 

  41. Eaglstein , W. H., M. Iriondo, and K. Laszlo (1995), A composite skin substitute (Graftskin) for surgical wounds, Dermatol. Surg. 21, 839-843 

  42. Cooper, M. L., and J. F. Hansbrough (1991), Use of a composite skin graft composed of cultured human keratinocytes and fibroblasts and a collagen-GAG matrix to cover full-thickness wounds on athymic mice, Surgery 109, 198-207 

  43. Yannas, I. V., and J. F. Burke (1980), Design of an artificial skin I . Basic design principles, J. Biomed. Mater. Res. 14, 65-81 

  44. Dagalakis, N., J. Flink, P. Stas ikelis, J. F. Burke, and I. V. Yannas (1980), Design of an artificial skin III . Control of pore structure , J. Biomed. Mater. Res. 14, 511-528 

  45. Yannas, I. V., J. F. Burke, P. L. Gordon , C. Huang, and R. H. Rubenstein (1980), Design of an artificial skin III . Control of chemical composition, J. Biomed. Mater. Res. 14, 107-132 

  46. Nehrer, S., H. A. Breinan, A. Ramappa, G. Young, S. Shortkroff, L. K. Louse, C. B. Sledge, I. V. Ya nnas, and M. Spector (1997), Matrix collagen type and pore size influence behaviour of seeded canine chondrocytes, Biomaterials 18, 769-776 

  47. Orgill, D. P., and I. V. Yannas (1998), Design of an artificial skin N. Ues of island graft to isolate organ regeneration from scar synthesis and other processes leading to skin wound closure , J. Biomed. Mater. Res. 39, 531-535 

  48. Doillon, C. J., C. F. Whyne, S. Brandwein, and F. H. Silver (1986), Collagen-based wound dressing : Control of the pore structure and morphology . J. Biomed. Mater. Res. 20, 1219-1228 

  49. Boyce, S. T , D. J. Christianson, and J. F. Hansbro ugh (1988), Structure of a collagen-GAG dermal skin substitute optimized for cultured human epidermal kerationcytes, J. Biomed. Mater. Res. 22, 939-957 

  50. Pieper, J. S., A. Oosterhof, P. J. Dijkstra, J. H. Veerkamp, and T. H. Van Kuppevelt (1996), Preparation and characterization of porous crosslinked collagenous matrices containing bioavailable chondroitin sulphate , Biomaterials 20, 847-858 

  51. Berthod, F., F. Sahuc, D. Hayek, O. Damour, and C. Collombel (1996), Deposition of collagen fibriles bundles by long -term culture of fibroblast in a collagen sponge, J. Biomed. Mater. Res. 32, 87-93 

  52. Lamme E. N., R. T. van Leeuwen, J. R. Mekker, E. Middelkoop (2002), Allogeneic fibroblasts in dermal substitutes induce inflammation and scar formaion, Wound Repair Regen . 10, 152-160 

  53. Morimoto, N., Y. Saso, K. Tomihata, T Taira, Y. Takahashi, M. Ohta, and S. Suzuki (2005), Viability and function of autologous and allogeneic fibroblasts seeded in dermal substitutes after implantation, J. Surg. Res. 125, 56-67 

  54. Seo Y. K., K. Y. Song, Y. J. Kim, and J. K. Park (2007), Wound healing effect of acellular artificial dermis containing extracellular matrix secreted by human skin fibroblast , Artif Organs 31, 509-520 

  55. Alexander, S. A., and R. B. Donoff (1980), The glycosaminoglycans of open wound, J. Surg. Res. 29, 422-429 

  56. Hu, M., E. E. Sabelman, Y. Gao, J. Chang , and V. R. Hentz (2003), Three-dimensional hyaluronic acid grafts promote healing and reduce scar formation in skin incision wounds, J. Biomed. Mater. Res. B Appl. Biomater. 67, 586-592 

  57. Murashita , T., Y. Nakayama , T. Hirano , and S. Ohashi (1997), Acceleration of granulation tissue ingrowth by hyaluronic acid in artificial skin, Br. J. Plast. Surg. 49, 58-63 

  58. Greco, R. M., J. A. Iocono, and H. P. Ehrich (1998), Hyaluronic acid stimulates human fibroblast proliferation within a collagen matrix , J. Cell. Physiol. 177, 465-473 

  59. Boralidi, F., M. A. Croce, D. Quaglino, R. Sammarco, E. Camevali, R. Tiozzo, and I. Pasquali-Ronchetti (2003), Cell-matrix interactions of in vitro human skin fibroblasts upon addition of hyaluronan , Tissue Cell 35, 37-45 

  60. Caplan, A. I. (2000), Tissue engineering designs for the future: New logics, old molecules , Tissue Eng. 6, 1-8 

  61. Galassi, G., P. Brun, G. Abatangelo, M. Radice, R. Cortivo, G. F. Zanon, P. Genovese , and G. Abatangelo (2000), In vitro reconstructed dermis implanted in human Wounds: degradation studies of the HA-based Supporting scaffold , Biomaterials 21, 2183-2191 

  62. Doillon , C. J., F. H. Silver, and R. A. Berg (1987), Fibroblasts growth on a porous collagen sponge containing hyaluronic acid and fibronectin, Biomaterials 8, 195-200 

  63. Doillon , C. J., and F. H. Silver (1986), Collagen-based wound dressing : Effect of hyaluronic acid and fibronectin on wound healing, Biomaterials 7, 3-8 

  64. Kubo, K., and Y. Kuroyanagi (2003), Characterization of a cultured dermal Substitute composed of a spongy matrix of hyaluronic acid and collagen comb ined with fibroblasts, J. Artif. Organs 6, 138-144 

  65. Kuroyanagi , Y., K. Kubo, S. Kagawa, H. Matsui, H. J. Kim, S. Numari , and Y. Mabuchi (2004), Establishment of banking system for allogeneic cultured dermal substitute, J. Artif. Organs 1, 13-21 

  66. Kashiwa , N., O. Ito, T. Ueda, K. Kubo, H. Matsui, and Y. Kuroyanagi (2004), Treatment of full-thickness skin defect with concomitant grafting of 6-fold extended mesh auto-skin and allogeneic cultured dermal substitute, Artif. Organs 5, 444-450 

  67. Kubo, K., and Y. Kuroyanagi (2004), Development of a cultured dermal substitute composed of a spongy matrix of hyaluronic acid and atelo-collagen combined with fibrob lasts : cryopreservation, Artif. Organs 2, 182-188 

  68. Kubo, K., and Y. Kuroyanagi (2003), Spongy matrix of hyaluronic acid and collagen as a cultured dermal substitute: evaluation in an animal test, Artif. Organs 6, 64-70 

  69. Caravaggi, C., R. De Giglio, C. Pritelli, M. Sornmaria, S. Dalla Noce, E. Faglia, M. Mantero, G. Clerici, P. Fratino, L. Dalla Paola, G. Mariani, R. Mingardi, and A. Morabito (2003), HYAFF 11 -based autologous dermal and epidermal grafts in the treatment of noninfected diabetic plantar and dorsal foot ulcers: a prospective, multicenter, controlled, randomized clinical trial, Diabetes Care 26, 2853-2859 

  70. Navsaria, H. A., S. R. Myers, I. M. Leigh, and I. A. McKay (1995), Culturing skin in vitro for wound therapy, TIBIOTECH. 13, 91-100 

  71. Lee, J. H., Y. S. Cho, H. H. Kim and J. S. Lee (1998), Wound dressing, Biomaterials Res. 2, 180-191 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로