$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

생물학적(生物學的) 방법(方法)에 의한 폐기물(廢棄物)의 재활용(再活用)
Waste Recycling Through Biological Route 원문보기

資源리싸이클링 = Journal of the Korean Institute of Resources Recycling, v.17 no.2 = no.82, 2008년, pp.3 - 15  

(한국지질자원연구원 자원활용소재연구부) ,  김동진 (한국지질자원연구원 자원활용소재연구부) ,  안종관 (한국지질자원연구원 자원활용소재연구부) ,  박경호 (한국지질자원연구원 자원활용소재연구부) ,  이승원 (충남대학교 나노공학부 나노소재공학과)

초록
AI-Helper 아이콘AI-Helper

다양한 독성 폐기물이 주변 환경에 배출되면 궁극적으로 모든 생명체의 생존에 위협이 된다. 박테리아 및 곰팡이종의 반응을 이용한 미생물침출 및 미생물복원을 포함하는 바이오 습식제련은 환경문제를 극복하는데 적합한 경제성이 있는 잠재기술이다. 미생물침출은 Thiobacillus ferrooxidans, Thiobacillus thiooxidans, Laptospirillum ferrooxidans와 같이 금속과 반응을 일으키는 박테리아를 이용하여 다양한 광물 및 폐기물로부터 금속 성분을 용해하는 것을 말한다. 일반적으로 미생물 침출반응은 직접 및 간접반응으로 나누어진다. 직접반응에서 박테리아는 성장 및 물질대사를 위하여 침출 기질로부터 전자를 받아 황산을 생산하므로써 황화광물을 산화시킨다. 반면 간접반응에서는 철산화 박테리아에 의해 생성된 $Fe^{3+}$가 황화광물을 산화시킨다. 이러한 침출기구를 통하여 저품위 광물 및 정광, 슬러지, 광미, 플라이 애쉬, 슬래그, 전자 스크랩, 폐밧데리 및 폐촉매 등으로부터 금속을 회수할 수 있다. 생물학적 방법은 폐기물의 매립을 극복할 수 있는 대체기술로서 건강하고 깨끗한 환경 보존에 기여할 수 있다.

Abstract AI-Helper 아이콘AI-Helper

Different toxic wastes are disposed of in our surroundings and these will ultimately threaten the existence of living organisms. Biohydrometallurgy, which includes the processes of bioleaching and bioremediation through the activities of microorganisms such as bacterial or fungal species, is a techn...

주제어

참고문헌 (70)

  1. J.W.C. Wong, L. Xiang, X.Y. Gu, and L.X. Zhou, 2004: Bioleaching of heavy metals from anaerobically digested sewage sludge using $FeS_2$ as an energy source. Chemosphere, 55, 101-107 

  2. S.Y. Chen, and J.G. Lin, 2004: Bioleaching of heavy metals from contaminated sediment by indigenous sulfuroxidizing bacteria in an air-lift bioreactor: effects of sulfur concentration. Water Res. 38, 3205-3214 

  3. N.W. Zhu, L.H. Zhang, C.J. Li, and C.G. Cai, 2003: Recycling of spent nickel-cadmium batteries based on bioleaching process. Waste Management, 23, 703-708 

  4. T.J. Xu, and Y.P. Ting, 2004: Optimization on bioleaching of incinerator fly ash by Aspergillus niger - use of central composite design. Enzyme Microb. Technol. 35, 444-454 

  5. M. Paul, A. Sandstrom, and J. Paul, 2004: Prospects for cleaning ash in the acidic effluent from bioleaching of sulfidic concentrates. J. Hazard. Mater. 106B, 39-54 

  6. S.Y. Shi, Z.H. Fang, J.R. Ni, 2006: Comparative study on the bioleaching of zinc sulphides. Process Biochemistry, 41, 438-446 

  7. H.L. Ehrlich, 1992: Metal extraction and ore discovery. In: Lederberg J, editor. Encyclopedia of microbiology, San Diego: Academic Press. 3, 75-80 

  8. F. Schinner, and W. Burgstaller, 1989: Extraction of zinc from industrial waste by Penicillium sp. Appl. Environ. Microbiol. 55, 1153-1156 

  9. M.R. Hoffmann, R.G. Arnold, and G. Stephanopoulos, 1989: US Patent 4880740 

  10. R.F. Wilder, P.J. Barrett, L.W. Henslee, and D. Arpi, 1986: Recovery of metal Oxides from Fly Ash, EPRI CS-3544, Palo Alto, CA, USA, Vols. 1-3. 

  11. A. Seidel, 1997: Mechanism of metals bioleaching from coal fly ash inconcentrated suspension by Thiobacillus thiooxidans bacteria. D.Sc.Thesis, The Technion, Haifa, Israel 

  12. A.E. Torma, and K. Bosecker, 1982: Prog. Ind. Microbiol. 16, 77 

  13. N.M. Catherine, K. Mahtab, F.G. Bernard, 2004: Bioleaching of heavy metals from a low-grade mining ore using Aspergillus niger. J. Hazard. Mater. 110, 77-84 

  14. A. Seidel, Y. Zimmels, and R. Armon, 2001: Mechanism of bioleaching of coal fly ash by Thiobacillus thiooxidans. Chem. Eng. J. 83, 123-130 

  15. H. Seidel, C. Loser, A. Zehnsdorf, P. Hoffmann, and R. Schmerold, 2004: Bioremediation process for sediments contaminated by heavy metals: feasibility study on a pilot scale. Environ. Sci. Technol. 8, 1582-1588 

  16. K. Bosecker, 1997: Bioleaching: metal solubilization by microorganisms. FEMS Microbiol Rev. 20, 591-604 

  17. W. Krebs, C. Brombacher, P.P. Bosshard, R. Bachofen, and H. Brandl, 1997: Microbial recovery of metals from solids. FEMS Microbiol Rev. 20, 605-617 

  18. T. Gehrke, J. Telegdi, D. Thierry, and W. Sand, 1998: Importance of extracellular polymeric substances from Thiobacillus thiooxidans for bioleaching. Appl. Environ. Microbiol. 64, 2743-2747 

  19. J.T. Staley, M.P. Bryant, N. Pfenning, and J.G. Holt (Eds.), 1989: Bergey's Manual of Systematic Bacteriology. Williams and Wilkins, USA. 3, 1857 

  20. K. Sakamoto, M. Yagasaki, K. Kirimura, and S. Usami, 1989: Resistance acquisition of Thiobacillus thiooxidans upon cadmium and zinc ion addition and formation of cadmium ion-binding and zinc ion-binding proteins exhibiting metallothionein-like properties. J. Ferment. Bioeng. 67, 266-273 

  21. M.N. Collinet, and D. Morin, 1990: Characterization of arsenopyrite oxidizing Thiobacillus. Tolerance to arsenite arsenate ferrous and ferric iron. Antonie van Leeuwenhook. 57, 237-244 

  22. G. Bryan, B. Christopher, K. Hallberg, and B. Johnson, 2006: Mobilization of metals in mineral tailings at the abandoned Sao Domingos copper mine (Portugal) by indigenous acidophilic bacteria. Hydrometallurgy. 83, 184-194 

  23. P.R. Norris, N.P. Burton, and N.A.M. Foulis, 2000: Acidophiles in bioreactor mineral processing, Extremophiles. 4, 71-76 

  24. J.A. Brierley, and C.L. Brierley, 2001: Present and future commercial applications of biohydrometallurgy, Hydrometallurgy. 59, 233-239 

  25. B.M. Goebel, E. Stackebrandt, F.G. Priest, A. Ramos- Cormenzana, B.J. Tindall, 1994: Bacterial Diversity and Systematics. FEMS Symposium, Plenum Press, New York. 131-273 

  26. C. Demargasso, P. Galleguillos, L. Escudero, V. Zepeda, D. Castillo, E.O. Casamayor, 2003: Proceedings of the Copper 2003, 5th International Conference, Santiago, Chile. 6 (book 1), 131-140 

  27. S.Y. Shi, and Z.H. Fang, 2005: Bioleaching of marmatite flotation concentrate by adapted mixed mesoacidophilic cultures in an air-lift reactor. Int. J. Miner. Process. 76, 3-12 

  28. M.P. Silverman, H.L. Ehrlich, 1964: Microbial formation and degradation of minerals.. In: Umbreit, Wayne W. (Ed.), Adv. Appl. Microbiol. 6, 153-206 

  29. D.K. Ewart and M.N. Hughes, 1991: The extraction of metals from ores using bacteria, Adv. Inorg. Chem. 36, 103 

  30. J. Barrett, M.N. Hughes, G.I. Karavaiko and P.A. Spencer, 1993: Metal extraction by Bacterial Oxidation of Minerals, Ellis Horwood, Chichester 

  31. A.W. Breed, G.S. Hansford, 1999: Studies on the mechanism and kinetics of bioleaching, Minerals Engineering, 12 (4), 383-392 

  32. A. Schippers, W. Sand, 1999: Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and Sulfur, Appl. And Environ. Micribiol., 65(1), 319-321 

  33. E. Rawlings (Ed.), 1997: Biomining: Theory, Microbes and Industrial Processes,Heidelberg, R.G., Landes and Springer-Verlag, Austin 

  34. H. Deveci, A. Akcil, and I. Alp, 2004: Bioleaching of complex zinc sulphides using mesophilic and thermophilic bacteria: comparative importance of pH and iron. Hydrometallurgy. 73, 293-303 

  35. M.X. Liao, and T.L. Deng, 2004: Zinc and lead extraction from complex raw sulfides by sequential bioleaching and acidic brine leach. Miner. Eng. 17, 17-22 

  36. M.Q. Qiu, S.Y. Xiong, W.M. Zhang, and G.X. Wang, 2005: A comparison of bioleaching of chalcopyrite using pure culture or a mixed culture. Miner. Eng. 18, 987-990 

  37. S.M. Mousavi, S. Yaghmaei, M. Vossoughi, A. Jafari, R. Roostaazad, and I. Turunen, 2007: Bacterial leaching of low-grade ZnS concentrate using indigenous mesophilic and thermophilic strains. Hydrometallurgy. 85, 59-65 

  38. O. Garcia Jr., J.M. Bigham, and O.H. Tuovinen, 1995: Sphalerite oxidation by Thiobacillus ferrooxidans and Thiobacillus thiooxidans. Canadian Journal of Microbiology. 41, 578-584 

  39. G.R. Chaudhury, and R.P. Das, 1987: Bacterial leaching complex sulfides of copper, lead and zinc. Int. J. Miner.Proces. 21, 57-64 

  40. S.S. Bang, S.S. Deshpande, and K.N. Han, 1995: The oxidation of galena using Thiobacillus ferrooxidans. Hydrometallurgy. 37, 181-192 

  41. F.K. Crundwell, 1988: The influence of the electronic structure of solid on the anodic dissolution and leaching of semiconductor sulphide minerals. Hydrometallurgy. 21, 155-190 

  42. F. Habashi, 1978: Chalcopyrite: Its Chemistry and Metallurgy. McGraw-Hill, New York 

  43. A.J. Parker, R.L. Paul, and G.P. Power, 1981: Electrochemistry of the oxidative leaching of copper from chalcopyrite. J. Electroanal. Chem. 118, 305-316 

  44. A. Ballester, F. Gonza'lez, M.L. Bla'zquez, and J.L. Mier, 1990: The influence of various ions in the bioleaching of metal sulfides. Hydrometallurgy. 23, 221-235 

  45. A. Ballester, F. Gonza'lez, M.L. Bla'zquez, C. Go'mez, and J.L. Mier, 1992: The use of catalytic ions in bioleaching. Hydrometallurgy. 29, 145-160 

  46. P.C. Banerjee, B.K. Chakrabarti, S. Bhattaacharyya, and A. Das, 1990: Silver-catalyzed hydro-metallurgical extraction of copper from sulfide ores from India mines. Hydrometallurgy. 25, 349-355 

  47. M.E. Escudero, F. Gonza'lez, M.L. Bla'zquez, A. Ballester, and C. Go'mez, 1993: The catalytic effect of some cations on the biological leaching of a Spanish complex sulphide. Hydrometallurgy. 34, 151-169 

  48. J.D. Miller, P.J. McDonough, and H.Q. Portillo, 1981: Electrochemistry in silver-catalyzed ferric sulfate leaching of chalcopyrite. In: Keaton, M.C. (Ed.), Process and Fundamental Consideration of Selected Hydrometallurgical Systems. SME-AIME, New York. 327-338 

  49. P.R. Norris, 1990: Acidophilic bacteria and their activity in mineral sulfide oxidation. In: Ehrlich, H.L., Brierley, C.L. (Eds.), Microbial Mineral Recovery. McGraw-Hill, New York 

  50. D. Mishra, D.J. Kim, D.E. Ralph, J.G. Ahn, and Y.H. Rhee, 2007: Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans, Waste Management (Article in Press) 

  51. R. Bosshard, 1998: Metallru¨ckgewinnung aus Elektronikschrott mit Hilfe von Bakterien. Diploma thesis, ETH Zurich, Switzerland 

  52. H. Brandl, R. Bosshard, and M. Wegmann, 2001: Computer-munching microbes: metal leaching from electronic scrap by bacteria and fungi. Hydrometallurgy. 59, 319-326 

  53. M.A. Faramarzi, M. Stagars, E. Pensini, W. Krebs, and H. Brandl, 2004: Metal solubilization from metal-containing solid materials by cyanogenic Chromobacterium violaceum. Journal of Biotechnology. 113, 321-326 

  54. K. Inai, 1994: Rev. Inst. France Petrol. 49(5), 521 

  55. G. Martino, 1994: Bull. Sot. Chim. Fr. 131, 444 

  56. P. Joffe, G.T. Sperl, 1993: DOE rep., PC-92119-T4. 

  57. K.A. Sanback, 1995: DOE Rep., PC/92119-T6 

  58. K.A. Sanback, P.M. Joffe, 1993: DOE Rep., PC-92119-T2 and T3 

  59. L. Briand, H. Thomas, A. de la Vega Alonso, E. Donati, 1999: Vanadium recovery from solid catalysts by means of Thiobacilli action. In: Amils, R., Ballester, A. (Eds.), Proceedings of the International Biohydrometallurgy Symposium (IBS), Part A. Elsevier, Amsterdam. 263-271 

  60. D. Santhiya, and Y.P. Ting, 2005: Bioleaching of spent refinery processing catalyst using Aspergillus niger with high-yield oxalic acid. Journal of Biotechnology. 116, 171-184 

  61. D. Santhiya, and Y.P. Ting, 2006: Use of adapted Aspergillus niger in the bioleaching of spent refinery processing catalyst. Journal of Biotechnology. 121, 62-74 

  62. A.D. Zunkel, 1997: Electric arc furnace dust management: a review of technologies. Iron and Steel Engineer. March, 33-38 

  63. M. Nemati, STL. Harrison, GS. Hansford, and C. Wess, 1988: Biological oxidation of ferrous sulphate by Thiobacillus ferrooxidans: a review on the kinetic aspects. Biochem. Eng. J. 171-190 

  64. C. Solisio, A. Lodi, and F. Veglio, 2002: Bioleaching of zinc and aluminium from industrial waste sludges by means of Thiobacillus ferrooxidans. Waste Management. 22, 667-675 

  65. TT. Eighmy, Jr J.D. Eusden, JE. Krzanowski, DS. Domingo, D. Stampfli, and JR. Martin, 1995: Comprehensive approach toward understanding element speciation and leaching behavior in municipal solid waste incineration electrostatic precipitator ash. Environ. Sci. Technol. 29, 629-646 

  66. PP. Bosshard, R. Bachofen, and H. Brandl, 1996: Metal leaching of fly ash from municipal waste incineration by Aspergillus niger. Environ. Sci Technol. 30, 3066-3070 

  67. H.Y. Wu, 2002: Bioleaching of heavy metals from MSW incineration fly ash by Aspergillus niger. Master Thesis. National University of Singapore (NUS) 

  68. Y.G. Liu, M. Zhou, G.M. Zeng, X. Li, W.H. Xu, and T. Fan, 2007: Effect of solids concentration on removal of heavy metals from mine tailings via bioleaching. J. of Hazard. Mat. 141, 202-208 

  69. C. Loser, H. Seidel, P. Hoffmann, and A. Zehnsdorf, 2001: Remediation of heavy metal-contaminated sediments by solid-bed bioleaching. Environ. Geol. 40, 643-650 

  70. J.F. Blais, R.D. Tyagi, and J.C. Auclair, 1992: Bioleaching of metals from sewage sludge by sulfur-oxidizing bacteria. J. Environ. Eng. 118, 690-707 

저자의 다른 논문 :

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로