$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Overexpression, Purification, and Preliminary X-ray Crystallographic Analysis of Human Brain-Type Creatine Kinase 원문보기

Journal of microbiology and biotechnology, v.18 no.2, 2008년, pp.295 - 298  

Bong, Seung-Min (Division of Biotechnology, College of Life Sciences, Korea University) ,  Moon, Jin-Ho (Division of Biotechnology, College of Life Sciences, Korea University) ,  Jang, Eun-Hyuk (Division of Biotechnology, College of Life Sciences, Korea University) ,  Lee, Ki-Seog (Division of Biotechnology, College of Life Sciences, Korea University) ,  Chi, Young-Min (Division of Biotechnology, College of Life Sciences, Korea University)

Abstract AI-Helper 아이콘AI-Helper

Creatine kinase (CK; E.C. 2.7.3.2) is an important enzyme that catalyzes the reversible transfer of a phosphoryl group from ATP to creatine in energy homeostasis. The brain-type cytosolic isoform of creatine kinase (BB-CK), which is found mainly in the brain and retina, is a key enzyme in brain ener...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • Even though a number of crystal structures for the CK family have been solved and analyzed extensively, a definitive catalysis mechanism has not yet been elucidated: For example, the exact role of the negatively charged NEED (Asn230, Glu227, Glu232, and Asp228) motif that is important for substrate binding and catalysis; Glu232 forms a bidentate salt bridge, and is positioned to act as a base to remove a proton from the nucleophilic nitrogen [16]; and Cys283, which is related to substrate recognition and catalysis, interacts with the non-nucleophilic r]-nitrogen [14]. In order to understand isoform specific substrate binding and catalysis in the human BB-CK, we overexpressed and crystallized the human BB-CK protein, and collected Xray ciystallographic data for determination of its three dimensional structure.

대상 데이터

  • 2 M ammonium acetate, and 30% PEG 4000, before being flash-frozen in liquid nitrogen. X-ray diffraction data were collected from the cooled crystals using an ADSC Quantum CCD 210 detector at the beamline 4A at Pohang Accelerator Labora:ory (Pohang, South Korea). Diffraction data were collected to 2.

이론/모형

  • The protein susponsion was concentrated to 40 mg/ml for crystallization. The protein concentration was determined by using Bradford's method with bovine serum albumin as the standard. The initial crystallization screening was performed using Crystal Screen I and II kits (Hampton Research, U.
본문요약 정보가 도움이 되었나요?

참고문헌 (20)

  1. Abraham, M. R., V. A. Selivanov, D. M. Hodgson, D. Pucar, L. V. Zingman, B. Wieringa, P. P. Dzeja, A. E. Alekseev, and A. Terzic. 2002. Coupling of cell energetics with membrane metabolic sensing. Integrative signaling through creatine kinase phosphotransfer disrupted by M-CK gene knock-out. J. Biol. Chem. 277: 24427-24434 

  2. Aksenov, M. Y., M. V. Aksenova, R. M. Payne, C. D. Smith, W. R. Markesbery, and J. M. Carney. 1997. The expression of creatine kinase isoenzymes in neocortex of patients with neurodegenerative disorders: Alzheimer's and Pick's disease. Exp. Neurol. 146: 458-465 

  3. Crawford, R. M., H. J. Ranki, C. H. Botting, G. R. Budas, and A. Jovanovic. 2002. Creatine kinase is physically associated with the cardiac ATP-sensitive K+ channel in vivo. FASEB J. 16: 102-104 

  4. David, S., M. Shoemaker, and B. E. Haley. 1998. Abnormal properties of creatine kinase in Alzheimer's disease brain: Correlation of reduced enzyme activity and active site photolabeling with aberrant cytosol-membrane partitioning. Mol. Brain Res. 54: 276-287 

  5. Eder, M., K. Fritz-Wolf, W. Kabsch, T. Wallimann, and U. Schlattner. 2000. Crystal structure of human ubiquitous mitochondrial creatine kinase. Proteins 39: 216-225 

  6. Eder, M., U. Schlatter, A. Becker, T. Wallimann, W. Kabsch, and K. Fritz-Wolf. 1999. Crystal structure of brain-type creatine kinase at 1.41 $\AA$ resolution. Protein Sci. 8: 2258-2269 

  7. Fritz-Wolf, K., T. Schnyder, T. Wallimann, and W. Kabsch. 1996. Structure of mitochondrial creatine kinase. Nature 381: 341-345 

  8. Grosse, R., E. Spitzer, V. V. Kupriyanov, V. A. Saks, and K. R. Repke. 1980. Coordinate interplay between (Na+ + K+)- ATPase and creatine phosphokinase optimizes (Na+/K+)-antiport across the membrane of vesicles formed from the plasma membrane of cardiac muscle cell. Biochim. Biophys. Acta 603: 142-156 

  9. Guerrero, M. L., J. Beron, B. Spindler, P. Groscurth, T. Wallimann, and F. Verrey. 1997. Metabolic support of Na+ pump in apically permeabilized A6 kidney cell epithelia: Role of creatine kinase. Am. J. Physiol. 272: C697-C706 

  10. Kaldis, P., W. Hemmer, E. Zanolla, D. Holtzman, and T. Wallimann. 1996. Hot spots of creatine kinase localization in brain: Cerebellum, hippocampus and choroid plexus. Dev. Neurosci. 18: 542-554 

  11. Lahiri, S. D., P. F. Wang, P. C. Babbitt, M. J. McLeish, G. L. Kenyon, and K. N. Allen. 2002. The 2.1 $\AA$ structure of Torpedo californica creatine kinase complexed with the $ADP-Mg^{2+}-NO^{3-}-creatine$ transition-state analogue complex. Biochemistry 41: 13861-13867 

  12. Matthews, B. W. 1968. Solvent content of protein crystals. J. Mol. Biol. 33: 491-497 

  13. McCoy, A. J., R. W. Grosse-Kunstleve, L. C. Storoni, and R. J. Read. 2005. Likelihood-enhanced fast translation functions. Acta Crystallogr. D 61: 458-464 

  14. Mcleish, M. J. and G. L. Kenyon. 2005. Relating structure to mechanism in creatine kinase. Biochem. Mol. Biol. 40: 1-20 

  15. Ohren, J. F., M .L. Kundracik, C. L. Borders, P. Edmistonb, and E. R. Viola. 2007. Structural asymmetry and intersubunit communication in muscle creatine kinase. Acta Crystallogr. D 63: 381-389 

  16. Pruett, P. S., A. Azzi, S. A. Clark, M. S. Yousef, J. L. Gattis, T. Somasundaram, W. R. Ellington, and M. S. Chapman. 2003.The putative catalytic bases have, at most, an accessory role in the mechanism of arginine kinase. J. Biol. Chem. 278: 26952-26957 

  17. Rao, J. K., G. Bujacz, and A. Wlodawer. 1998. Crystal structure of rabbit muscle creatine kinase. FEBS Lett. 439: 133-137 

  18. Shen, Y. Q., L. Tang, H. M. Zhou, and Z. J. Lin. 2001. Structure of human muscle creatine kinase. Acta Crystallogr. D 57: 1196-1200 

  19. Tisi, D., B. Bax, and A. Loew. 2000. The three-dimensional structure of cytosolic bovine retinal creatine kinase. Acta Crystallogr. D 57: 187-193 

  20. Walliman, T. and W. Hemmer. 1994. Creatine kinase in nonmuscle tissues and cells. Mol. Cell. Biochem. 133-134: 193-220 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로