$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

고분자 연료전지용 전기촉매의 이론과 설계
Theory & Design of Electrocatalyst for Polymer Electrolyte Membrane Fuel Cell 원문보기

전기화학회지 = Journal of the Korean Electrochemical Society, v.12 no.1, 2009년, pp.11 - 25  

유성종 (서울대학교 화학생물공학부) ,  전태열 (서울대학교 화학생물공학부) ,  성영은 (서울대학교 화학생물공학부)

초록
AI-Helper 아이콘AI-Helper

연료전지는 가까운 미래를 위한 핵심 청정 신에너지원 중의 하나로 기대된다. 그러나 고분자 연료전지에서 공기극은 느린 산소환원반응과 많은 백금 사용 때문에 상업화에 어려움을 겪고 있으며, 이것을 해결하는 것이 최근 당면 과제이다. 또한 연료극은 일산화탄소의 피독 현상과 전극의 안정성이 문제시 되고 있다. 본 총설에서는 고분자 연료전지를 위한 연료극, 공기극 전기화학 촉매의 이론적 접근을 통해 촉매를 설계하는 최근 연구 내용을 소개하려 한다. 촉매 설계는 합금 전기 화학 촉매를 통해 접근 했으며, 이는 electronic, geometric, lateral effects를 손쉽게 조절할 수 있게 한다. 이것은 계산되어진 d-band center의 함수에 의존하며, 촉매의 활성과 큰 관계를 가짐을 발견하였다. 본고에서 지향하는 촉매의 최종 방향은 이론적 접근을 통해서 촉매의 사용량을 줄이면서 효율적으로 사용하는 것이다.

Abstract AI-Helper 아이콘AI-Helper

Fuel cells are expected to be one of the major clean new energy sources in the near future. However, the slow kinetics of electrocatalytic hydrogen oxidation reaction (HOR) and oxygen reduction reaction (ORR), and the high loading of Pt for the anode and cathode material are the urgent issues to be ...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
연료전지로부터 발생된 전기에너지는 어떤 방식으로 활용 가능하다 보는가? 1) 즉, 태양에너지를 변환하여 수소를 생산하면 이는 적절한 저장장치를 거쳐 연료전지의 연료로 활용될 수 있다.2) 또한 연료전지로부터 발생된 전기에너지는 직접 여러 용도에 이용되거나, 2차전지 또는 초고용량 캐패시터에 저장되었다가 필요한 용도에 활용될 수 있다. 연료전지는 전해질의 종류에 따라 여러 형태가 가능하나 그 중에서도 고분자 연료전지 (PEMFC)가 분산 에너지 이용시스템에 가장 적당한 것으로 판단된다.
순수하지 않은 수소 연료가 주입되었을 때 백금 연료극에 문제가 생기는 이유는? 일반적으로 수소산화 반응이 백금 표면에서 매우 빠르게 반응이 일어나지만, 천연가스나 메탄올, 에탄올과 같은 순수하지 않은 수소 연료를 연료극에 주입했을 때 백금 연료극에 큰 문제를 일으킨다. 그 이유는 소량의 CO가 수소 연료에 있을 경우 백금은 쉽게 피독되기 때문에 더 이상 수소산화 촉매로서 역할을 못하게 된다. 백금의 또 다른 문제점은 백금의 높은 가격을 들 수 있는 데, 이것은 연료전지를 상업화 하는데 큰 장애가 되고 있다.
수소 에너지를 이용하는 시스템으로 무엇이 가장 떠오르는가? 수소 에너지를 이용하는 시스템으로는 연료 전지가 가장 유망하며, 미래 사회의 분산 에너지이용 시스템에서 연료전지는 핵심적인 역할을 할 것으로 기대된다.1) 즉, 태양에너지를 변환하여 수소를 생산하면 이는 적절한 저장장치를 거쳐 연료전지의 연료로 활용될 수 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (58)

  1. R. Wengenmayr and T. Bhrke, Renewable energy :sustainable energy concepts for the future, Wiley-VCH, Weinheim (Germany), (2008) 

  2. C. A. Grimes, O. K. Varghese, and S. Ranjan, Light, Water, Hydrogen: The Solar Generation of Hydrogen by Water Photoelectrolysis, Springer, New York (USA), (2008) 

  3. K. Kordesch and G. Simander, Fuel Cells and their Applications, VCH, Weinheim (Germany), (1996) 

  4. W. Vielstich, A. Lamm, and H. Gasteiger, Handbook of Fuel Cells: Fundamentals, Technology and Applications, Wiley, Chichester (UK), (2003) 

  5. I. Fishtik, C. A. Callaghan, J. D. Fehribach, and R. Datta, 'A reaction route graph analysis of the electrochemical hydrogen oxidation and evolution reactions' J. Electroanal. Chem., 576, 57 (2005) 

  6. R. R. Adzic, Electrocatalysis, Wiley-VCH, New York (USA), (1998) 

  7. A. Ruban, B. Hammer, P. Stoltze, H. L. Skriver, and J. K. Norskov, 'Surface electronic structure and reactivity of transition and noble metals' J. Mol. Catal. A, 115, 421 (1997) 

  8. B. Hammer and J. K. Norskov, 'Theoretical surface science and catalysis-calculations and concepts' Adv. Catal., 45, 71 (2000) 

  9. J. Greeley, J. K. Norskov, and M. Mavrikakis, 'Electronic structure and catalysis on metal surfaces' Annu. Rev. Phys. Chem., 53, 319 (2002) 

  10. F. Garin, 'Environmental catalysis' Catal. Today, 89, 255 (2004) 

  11. B. C. Gates and H. Knoezinger, eds., Advances in Catalysis (Volume 45), Academic Press, San Diego (USA), (2000) 

  12. Y. Xu, A. V. Ruban, and M. Mavrikakis, 'Adsorption and Dissociation of O2 on PtCo and PtFe Alloys' J. Am. Chem. Soc., 126, 4714 (2004) 

  13. J. A. Rodriguez and D. W. Goodman, 'The Nature of the Metal-Metal Bond in Bimetallic Surfaces' Science, 257, 897 (1992) 

  14. F. Buatier de Mongeot, M. Scherer, B. Gleich, E. Kopatzki, and R. J. Behm, 'CO adsorption and oxidation on bimetallic Pt/Ru(0001) surfaces-a combined STM and TPD/TPR study' Surf. Sci., 411, 249 (1998) 

  15. M. Mavrikakis, B. Hammer, and J. K. Norskov, 'Effect of Strain on the Reactivity of Metal Surfaces' Phys. Rev. Lett., 81, 2819 (1998) 

  16. Y. Gauthier, M. Schmid, S. Padovani, E. Lundgren, V. Bu, G. Kresse, J. Redinger, and P. Varga, 'Adsorption Sites and Ligand Effect for CO on an Alloy Surface: A Direct View' Phys. Rev. Lett., 87, 036103 (2001) 

  17. P. Liu and J. K. Norkov, 'Ligand and ensemble effects in adsorption on alloy surfaces' Phys. Chem. Chem. Phys., 3, 3814 (2001) 

  18. D. Tomnek, S. Mukherjee, V. Kumar, and K. H. Bennemann, 'Calculation of chemisorption and absorption induced surface segregation' Surf. Sci., 114, 11 (1982) 

  19. S. C. Fain and J. M. McDavid, 'Work-function variation with alloy composition: Ag-Au' Phys. Rev. B, 9, 5099 (1974) 

  20. H. Yamauchi, 'Surface segregation in Jellium binary solid solutions' Phys. Rev. B, 31, 7688 (1985) 

  21. A. Kiejna, 'Comment on the surface segregation in alkalimetal alloys' J. Phys. Condens. Matter, 2, 6331 (1990) 

  22. B. Coq and F. Figueras, 'Structure-Activity relationships in catalysis by metals: Some aspects of particle size, bimetallic and supports effects' Coord. Chem. Rev., 178-180, 1753 (1998) 

  23. A. K. N. Reddy and J. O. M. Bockris, Modern electrochemistry, Plenum Press, New York (USA), (1973) 

  24. I. Fishtik, C. A. Callaghan, J. D. Fehribach, and R. Datta, 'A reaction route graph analysis of the electrochemical hydrogen oxidation and evolution reactions' J. Electroanal. Chem., 576, 57 (2005) 

  25. K. Christmann, Electrocatalysis, Wiley-VCH, New York (USA), (1998) 

  26. A. J. Bard and L. R. Faulkner, Electrochemical methods (Fundamentals and applications), John Wiley & Sons, (2001) 

  27. (a) J. A. Turner, 'A realizable renewable energy future' Science, 285, 687 (1999) 

  28. (b) L. Schlapbach and A. Zttel, 'Hydrogen-storage materials for mobile applications' Nature, 414, 353 (2001) 

  29. J. Greeley and M. Mavrikakis, 'Alloy catalysts designed from first principles' Nature Mater., 3, 810 (2004) 

  30. S. Dahl, C. J. H. Jacobsen, A. Logadottir, S. Bahn, L. B. Hansen, M. Bollinger, and H. Bengaard, 'Universality in heterogeneous catalysis' J. Catal., 209, 275 (2002) 

  31. S. J. Yoo, H.-Y. Park, T.-Y. Jeon, I.-S. Park, Y.-H. Cho, and Y.-E. Sung, 'Promotional effect of palladium on the hydrogen oxidation reaction at a PtPd alloy electrode' Angew. Chem. Int. Ed., 47, 9307 (2008) 

  32. L. A. Kibler, 'Hydrogen electrocatalysis' Chem Phys Chem, 7, 985 (2006) 

  33. J. Greeley, J. K. N $\phi$ rskov, L. A. Kibler, A. M. El-Aziz, and D. M. Kolb, 'Hydrogen evolution over bimetallic systems: Understanding the trends' ChemPhysChem, 7, 1032 (2006) 

  34. K. Wang, H. A. Gasteiger, N. M. Markovic, and P. N. Ross, 'On the reaction pathway for methanol and carbon monoxide electrooxidation on Pt-Sn alloy versus Pt-Ru alloy surfaces' Electrochim. Acta, 41, 2587 (1996) 

  35. S. Wasmus and A. Kver, 'Methanol oxidation and direct methanol fuel cells: A selective review' J. Electroanal. Chem., 461, 14 (1999) 

  36. C. Lamy, A. Lima, V. LeRhun, F. Delime, C. Coutanceau, and J.-M. Lger, 'Recent advances in the development of direct alcohol fuel cells (DAFC)' J. Power Sources, 105, 283 (2002) 

  37. M. Watanabe and S. Motoo, 'Electrocatalysis by ad-atoms part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms' J. Electroanal. Chem., 60, 267 (1975) 

  38. E. Antolini, J. R. C. Salgado, and E. R. Gonzalez, 'Carbon supported Pt75M25 (M Co, Ni) alloys as anode and cathode electrocatalysts for direct methanol fuel cells' J. Electroanal. Chem., 580, 145 (2005) 

  39. A. Damjanovic, M. A. Genshaw, and J. O. M. Bockris, 'The Mechanism of Oxygen Reduction at Platinum in Alkaline Solutions with Special Reference to $H_2O_2$ ' J. Electrochem. Soc., 114, 1107 (1967) 

  40. J. S. Griffith, Pro. R. Soc. London 1956, Ser.A, 23 

  41. L. Pauling, 'Nature of the Iron-Oxygen Bond in Oxyhae moglobin' Nature, 203, 182 (1964) 

  42. E. Yeager, 'Recent Advances in the Science of Electrocatalysis' J. Electrochem. Soc., 128, 160C (1981) 

  43. C. Puglia, A. Nilsson, B. Hernns, and O. Karis, P. Bennich, and N. Mrtensson, 'Physisorbed, chemisorbed and dissociated $O_2$ on Pt(111) studied by different core level spectroscopy methods' Sur. Sci., 342, 119 (1995) 

  44. A. W. Edith Chan, Roald Hoffmann, and W. Ho, 'Theoretical aspects of photoinitiated chemisorption, dissociation, and desorption of oxygen on platinum (111)' Langmuir, 8, 1111 (1992) 

  45. A. Damjanovic, V. Brusic, and John O'M. Bockris, 'Mechanism of oxygen reduction related to electronic structure of gold-palladium alloy' J. Phys. Chem., 71, 2741 (1967) 

  46. N. M. Markovic and P. N. Ross In: Wieckowski, Editor, Interfacial Electrochemistry. Theory, Experiment and Applications, Marcel Dekker, New York (USA), (1999) 

  47. J. X. Wang, N. M. Markovic, and R. R. Adzic, 'Kinetic Analysis of Oxygen Reduction on Pt(111) in Acid Solutions: Intrinsic Kinetic Parameters and Anion Adsorption Effects' J. Phys. Chem. B, 108, 4127 (2004) 

  48. R. A. Sidik and A. B. Anderson, 'Density functional theory study of $O_2$ electroreduction when bonded to a Pt dual site' J. Electroanal. Chem., 528, 69 (2002) 

  49. S. J. Clouser, J. C. Huang, and E. Yeager, 'Temperature dependence of the Tafel slope for oxygen reduction on platinum in concentrated phosphoric acid' J. Appl. Electrochem., 23, 597, (1993) 

  50. A. C. Luntz, J. Grimblot, and D. E. Fowler, 'Sequential precursors in dissociative chemisorption: $O_2$ on Pt(111)' Phys. Rev. B, 39, 12903 (1989) 

  51. B. N. Grgur, N. M. Markovi, and P. N. Ross, Jr., 'Underpotential Deposition of Lead on Pt(111) in Perchloric Acid Solution' Langmuir, 13, 6370 (1997) 

  52. Nenad M. Markovic, Hubert A. Gasteiger, and Philip N. Ross Jr., 'Oxygen Reduction on Platinum Low-Index Single-Crystal Surfaces in Alkaline Solution: Rotating Ring Disk Pt(hkl) Studies' J. Phys. Chem., 100, 6715 (1996) 

  53. A. B. Anderson and T. V. Albu, 'Catalytic Effect of Platinum on Oxygen Reduction An Ab Initio Model Including Electrode Potential Dependence' J. Electrochem. Soc., 147, 4229, (2000) 

  54. J. K. N $\phi$ rskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, and H. Jonsson, 'Origin of the overpotential for oxygen reduction at a fuel-cell cathode' J. Phys. Chem. B, 108, 17886 (2004) 

  55. S. Mukerjee, 'Particle size and structural effects in platinum electrocatalysis' J. Appl. Electrochem., 20, 537 (1990) 

  56. S. Mukerjee, S. Srinivasan, M. P. Soriaga, and J. McBreen, 'Effect of preparation conditions of Pt alloys on their electronic, structural, and electrocatalytic activities for oxygen reduction-XRD, XAS, and electrochemical studies' J. Phys. Chem., 99, 4577 (1995) 

  57. N. Giordano, E. Passalacqua, L. Pino, A. S. Arico, V. Antonucci, M. Vivaldi, and K. Kinoshita, 'Analysis of platinum particle size and oxygen reduction in phosphoric acid' Electrochim. Acta, 36, 1979 (1991) 

  58. J. Zhang, M. B. Vukmirovic, Y. Xu, M. Mavrikakis, R. R. Adzic, 'Controlling the Catalytic Activity of Platinum-Monolayer Electrocatalysts for Oxygen Reduction with Different Substrates' Angew. Chem. Int. Ed., 44, 2132 (2005) 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로