$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 미생물연료전지의 재료 : 전극 및 분리막, 집전체
Materials for microbial fuel cell : electrodes, separator and current collector 원문보기

대한환경공학회지 = Journal of Korean Society of Environmental Engineers, v.31 no.9, 2009년, pp.693 - 704  

송영채 (한국해양대학교 건설환경공학부) ,  우정희 (한국해양대학교 녹색에너지환경연구센터) ,  유규선 (전주대학교 토목환경공학과)

초록이 없습니다.

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 3,10,12,13) 미생물연료전지의 재료는 음극과 양극재료, 분리막, 집전체, 양극전해질 및 촉매 등으로 대별된다. 본 논문에서는 지금까지의 연구결과들을 바탕으로 미생물연료전지에 사용되는 상기한 재료들의 종류와 특성에 대하여 조사하고 분석하였다.

가설 설정

  • 먼저, 탄소 또는 흑연 평판의 경우 비교적 강도가 큰 경성이며 부서지기 쉽지만 회로용 전선을 접속하기 쉽다.15) 미생물연료전지에서 회로를 구성하기 위하여 구리선을 음극에 연결할 때는 피복이 벗겨진 구리선이 연결부위 부근에서 음극용액에 직접 노출되지 않도록 피복하여야 한다.1,17) 에폭시는 연결부위에서 구리가 음극용액에 노출되는 것을 막기 위하여 널리 사용하는 피복제이다.
  • 5 μm 정도로 매우 가늘기 때문에 흑연섬유를 이용하여 음극을 브러쉬 형태로 만들 경우 공극과 표면적을 극대화할 수 있다.15) 흑연섬유 브러쉬 음극에서 집전체 역할을 하는 심으로는 부식성이 없는 스테인리스 선이나 티타늄 선 등과 같은 물질을 사용하면 좋다.15) 흑연섬유 브러쉬 음극의 일례로서 Logan 등(2007)이 사용한 직경이 5 cm, 길이가 7 cm인 브러쉬의 비표면적과 공극율은 각각 7,170 m2/m3 및 98%로서 대단히 컸다.
  • 쌍극자 분리막을 사용하는 미생물연료전지에서는 전하수지를 맞추기 위하여 물이 분해되어 생성된 수산화기(OH-)는음극반응조로 양성자 이온(H+)은 양극반응조로 이동한다.36) 물이 수산화 이온과 양성자로 분해되는데 필요한 에너지는 크지 않다. 1몰의 산-염기용액에서 쌍극분리막이 100% 선택작용을 가지도록 하기 위해서 필요한 전위차는 0.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
미생물연료전지는 어떻게 구성됩니까? 미생물연료전지는 유기물에 함유된 화학에너지를 전기적으로 활성을 가진 미생물의 촉매작용을 이용하여 전기에너지로 직접 변환시키는 새로운 형태의 에너지 변환장치이다. 미생물연료전지는 음극과 양극을 각각 담지하고 있는 음극 반응조와 양극반응조 그리고 이들을 공간적으로 분리하여 구분시키는 분리막, 음극과 양극을 도선으로 연결한 회로로 구성된다. 유기물은 미생물연료전지의 음극반응조로 유입하며, 음극의 표면에 생물막 형태로 존재하는 미생물에 의하여 분해되어 전자와 양성자 및 이산화탄소를 생성한다.
하폐수처리를 위한 미생물연료전지 기술은 무엇을 의미하며 이것의 장점은 어떠합니까? 3) 하폐수처리를 위한 미생물연료전지 기술에 대한 연구는 Kim 등 (1999)이 철환원균인 Shewanella putrefaciens가 별도의 매개체 없이 전자를 무생물인 전극으로 전달할 수 있다고 보고한 이후 본격적으로 연구되기 시작하였다.4~7) 미생물연료전지기술은 하폐수처리를 위한 미래의 2P3L (2P : Production of clean water and electric power, 3L : Low operation cost, Low sludge production and Low carbon dioxide emission)기술이라 할 수 있다. 이것은 미생물연료전지의 원료로 하폐수에 함유된 유기물을 이용한다면 하폐수를 처리하여 청정한 처리수를 생산함과 동시에 원료에 대한 대가 지불 없이 전기를 생산할 수 있다는 것을 의미한다. 또한, 미생물연료전지에서 유기물은 혐기성상태에서 분해되기 때문에 폭기 등을 위한 별도의 운전비용이 필요하지 않으며,7) 음극표면의 전기적으로 활성을 가진 미생물은 수율이 낮아 슬러지 생산량이 상대적으로 크지 않으며,8,14) 혐기성공정이기 때문에 발생하는 이산화탄소는 쉽게 포집하여 방출을 막을 수 있음을 나타낸다. 지난 10여년 동안 미생물연료전지 연구의 주요 관심사는 하폐수에 함유된 유기물로부터 생산하는 전력을 극대화하는 것이었으며, 최근 들어 괄목할 만한 연구성과들이 보고되고 있다.
미생물연료전지란 무엇입니까? 미생물연료전지는 유기물에 함유된 화학에너지를 전기적으로 활성을 가진 미생물의 촉매작용을 이용하여 전기에너지로 직접 변환시키는 새로운 형태의 에너지 변환장치이다. 미생물연료전지는 음극과 양극을 각각 담지하고 있는 음극 반응조와 양극반응조 그리고 이들을 공간적으로 분리하여 구분시키는 분리막, 음극과 양극을 도선으로 연결한 회로로 구성된다.
질의응답 정보가 도움이 되었나요?

참고문헌 (65)

  1. Rismani-Yazdi, H., Carver, S. M., Christy A. D., and Tuovinen, O. H., "Cathodic limitations in microbial fuel cells: Overview", Journal of Power Sources, 180, 683-694(2008) 

  2. Catal, C, Li, K., Bermek H., and Liu, H., "Electricity production from twelve monosaccharides using microbial fuel cell", 195, 196-200(2008) 

  3. Pham, T. H., Rabaey, K., Aelterman, P., Clauwaert, P., Schamphelaire, L. D., Boon, N., and Verstraete, W., "Microbial Fuel Cells in Relation to Conventional Anaerobic Digestion Technology", Eng. Life Sci., 6(3), 285-292(2006) 

  4. Kim, B. H., Kim, H. J., Hyun, M. S., and Park D. H., "Direct electrode reaction of an Fe(III) reducing bacterium, Shewanella putrefaciances", Journal of Microbiology and Biotechnology, 9, 127-131(1999) 

  5. Logan, B. E., Hamelers B., Rozendal R., Schroder U., Keller, J., Freguia S., Aelterman P., Verstraete W., and Rabaey K., "Microbial fuel cells: methothology and technology", Environ. Sci. Technology, 40, 5181-5192(2006) 

  6. Lovely D. R., "Microbial fuel cells: novel microbial physiologies and engineering approaches", Current Opinion Biotechnology, 17, 327-332(2006) 

  7. Rabaey, K., and Verstraete W., "Microbial fuel cells: novel biotechnology for energy generation", Trends Biotechnology, 23, 291-291(2005) 

  8. Rabaey, K., Lissens, G., Siciliano S. D., and Verstraete, W., "A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency, Biotechnology Letters 25, 1531-1535 (2003) 

  9. Clauwaert, P., Aelterman, P., Pham, T. H., Schamphelaire, L. D., Carballa, M., Rabaey, K., and Verstraete, W., "Minimizing losses in bio-electrochemical systems: the road to application", Applied Microbiology and Biotechnology, 79, 901-913(2008) 

  10. Pham, T. H., Aelterman, P., and Verstraete, W., "Bioanode performance in bioelectrochemical systems: recent improvements and prospects", trends in Biotechnology, 27(3), 168-178(2009) 

  11. Du, Z., Li, H., and Gu, T., "state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy, Biotechnology Advances, 25 464-482(2007) 

  12. Watanabe, K., "Recent developments in microbial fuel cell technologies for sustainable bioenergy", Journal of Bioscience and Bioengineering, 106(6), 528-536(2008) 

  13. Rozendal, R. A., Hamelers, H. V. M., Rabaey, K., Keller, J., and Buisman, C. J. N., "Towards practical implementation of bioelectrochemical wastewater treatment", Trends in Biotechnology, 26(8), 450-459(2008) 

  14. Kim, B. H., Chang, I. S., and Gadd, G. M., "Challenges in microbial fuel cell development and operation", Appl Microbiol Biotechnol, 76, 485-494(2007) 

  15. Logan, B. E., Microbial Fuel Cells, John Wiley & Sons, Inc. 62-68(2008) 

  16. Ouitrakul, S., Sriyudthsak, M., Charojrochkul, S., and Kakizono, T., "Impedance analysis of bio-fuel cell electrodes", Biosensors and Bioelectronics, 23, 721-727(2007) 

  17. Mohan, S. V., Saravanan, R., Raghavulu, V., Mohanakrishna, G., Sarma, P. N., "Bioelectrocity production from wastewater treatment in dual chambered microbial fuel cell(MFC) using selectively enriched mixed microflora: Effect of catholyte", Bioresource Technology, 99, 596-603(2008) 

  18. Biffinger, J. C., Byrd, J. N., Dudley, B. L., and Ringeisen, B. R., "Oxygen exposure promotes fuel diversity for Shewanella oneidensis microbial fuel cells", Biosensors and Bioelectronics, 23, 820-826(2008) 

  19. Gonlvesa, E. S., Rezendea, M. C., Takahashic, M. F. K., and Ferreira, N.G., "Electrochemical Reversibility of Reticulated Vitreous Carbon Electrodes Heat Treated at Different Carbonization Temperature" Materials Research, 9(2), 147-152, (2006) 

  20. Wang, J., "Reticulated vitreous carbon : A new versatile electrode material," Electrochimica Acta, 26(12), 1721-1726(1981) 

  21. Yazici, M. S., Krassowski, D., Prakash, J., "Flexible graphite as battery anode and current collector", Journal of Power Sources 141, 171-176(2005) 

  22. Rabaey, K., Clauwaert, P., and Verstraete, W., 'Tubular Microbial Fuel Cells for Efficient Electricity Generation', Environ. Sci. Technol., 39, 8077-8082(2005b) 

  23. Wu, P., Li, B., Du, H., Gan, L., Kang, F., and Zeng, Y., "The influences of multi-walled carbon nanotube addition to the anode on the performance of direct methanol fuel cells", Journal of Power Sources 184, 381-384(2008) 

  24. Cheng, S., and Logan, B. E., "Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells", Electrochemistry Communications, 9, 492-496(2007) 

  25. Rosenbaum, M., Zhao, F., Schrder, W., and Scholz, F., "Interfacing Electrocatalysis and Biocatalysis with Tungsten Carbide: A High-Performance, Noble-Metal-Free Microbial Fuel Cell", Angewandte Chemi, 118, 1-4(2006) 

  26. Logan, B., Cheng, S., Watson, V., and Estadt, G., "Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells", Environ. Sci. Technol. 41, 3341-3346 (2007) 

  27. Niessen, J., Schroder, W., Rosenbaum, M., and Scholz, F., "Fluorinated polyanilines as superior materials for electrocatalytic anodes in bacterial fuel cells", Electrochemistry Communications, 6, 571-575(2004) 

  28. Yuan, Y., and Kim, S., "Polypyrrole-Coated Reticulated Vitreous Carbon as Anode in Microbial Fuel Cell for Higher Energy Output", Bull. Korean Chem. Soc., 29(1), 168-172(2008) 

  29. Zou, Y., Xiang, C., Yang, L., Sun, L. X., Xu, F., and Cao, Z., "A mediatorless microbial fuel cell using polypyrrole coated carbon nanotubes composite as anode material", International Journal of Hydrogen Energy, 33(18), 4856-486 (2008) 

  30. Qiao, Y., Li, C. M., Bao, S. J., and Bao, Q. L., "Carbon nanotube/polyaniline composite as anode material for microbial fuel cells", Journal of Power Sources, 170, 79-84(2007) 

  31. Jang, J. K., Pham, T. H., Chang, I. S., Kang, K. H., Moon, H., Cho, K. S., and Kim, B. H., "Construction and operation of a novel mediator- and membrane less microbial fuel cell", Process Biochemistry, 39, 8: 1007-1012(2004) 

  32. Ghangrekar, M. M., and Shinde, V. B., "Performance of membrane-less microbial fuel cell treating wastewater and effect of electrode distance and area on electricity production", Biores. Technol., 98, 2879-2882(2007) 

  33. Liu, H., and Logan, B. E., "Electricity generation using an air cathode single chamber microbial fuel cell in the presence and absence of proton exchange membrane", Environ. Sci. Technol., 38, 4040-4046(2004) 

  34. Oh, S. E., and logan, B. E., "Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells", Appl. Microbiol. and Biotechnol., 70, 162-169(2006) 

  35. Rozendal, R. A., Sleutels, T. H. J. A., Hamelers, H. V. M., and Buisman, C. J. N., "Effect of the type of ion exchange membrane on performance, ion transport, and pH in biocatalyzed electrolysis of wastewater", Water Science and Technology, 57(11), 1757-1762(2008) 

  36. Heijne, A. T., Hamelers, H. M., Wilde, V. D., Rozendal, R., and Buisman, C. N., "A Bipolar Membrane Combined with Ferric Iron Reduction as an Efficient Cathode System in Microbial Fuel Cells", Environ. Sci. Technol., 40, 5200-5205(2006) 

  37. Rozendal, R., H. M. Hamelers, Buisman, C. N., "Effects of Membrane Cation Transport on pH and Microbial Fuel Cell Performance", Environ. Sci. Technol., 40, 5206-5211(2006) 

  38. Clauwaert, P., Ha, D. V. D., Boon, N., Verbeken, K., Verhaege, M., and Verstraete, W., "Open air biocathode enables effective electricity generation with microbial fuel cells", Environ. Sci. Technol., 41(21), 7564-7569(2007) 

  39. Kim, J. R., Oh, S. E., Cheng, S., and Logan, B. E., "Power generation using different cation, anion and ultrafiltration membranes in microbial fuel cells", Environmental Science & Technology, 41(3), 1004-1009(2007) 

  40. Song, Y. C., Yoo, K. S., Rajakumar, S., Lee, S. K., Lee, C. Y., and Chung, J. W., "A novel horizontal flow surface air cathode microbial fuel cell for electricity production during wastewater treatment", Proceeding of the 1st International Symposium on Microbial Fuel Cell, pp.122-123, Harbin, China(2008) 

  41. Mohan, S. V., Raghavulu, S. V., and Sarma, P. N., "Biochemical evaluation of bioelectricity production process from anaerobic wastewater treatment in a single chambered microbial fuel cell(MFC) employing glass wool membrane", Biosensors and Bioelectronics, 23(9), 1326-1332(2008) 

  42. Fan, Y., Hu, H., and Liu, H., "Sustainable Power Generation in Microbial Fuel Cells Using Bicarbonate Buffer and Proton Transfer Mechanismsv, Environ. Sci. Technol., 41, 8154-8158 (2007a) 

  43. Fan, Y., Hu, H., and Liu, H., "Enhanced Coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration", Journal of Power Sources, 171, 348-354 (2007b) 

  44. You, S., Zhao, Q., Zhang J., Jiang, J., Wan, C., Du, M., and Zhao, S., "A graphite granule membrane less tubular air cathode microbial fuel cell for power generation under continuously operational conditions", Journal of Power Sources, 173, 172-177 (2006) 

  45. Cheng, S., Liu, H., and Logan, B. E., "Increased performance of single-chamber microbial fuel cells using an improved cathode structure", Electrochemistry Communications 8, 489-494(2006a) 

  46. Zuo, Y., Cheng, S., Call, D., and Logan, B. E., "Tubular membrane cathodes for scalable power generation in microbial fuel cell", Environ. Sci. technol., 41(9), 3347-3353(2007) 

  47. Zhuang, L., Zhou, S., Wang, Y., Liu, C., and Geng, S., "Membrane-less cloth cathode assembly (CCA) for scalable microbial fuel cells", Biosensors and Bioelectronics, 24(12), 3652-3656(2009) 

  48. He, Z., and Angenent, T., "Application of bacterial bf bathodes in microbial fuel cells", Electroanalysis, 18(19-20), 2009-2015 (2009) 

  49. You, S., Zhao, Q., Zhang, J., Jiang, J., and Zhao, S., 'A microbial fuel cell using permanganate as the cathodic electron acceptor', Journal of Power Sources, 162(2), 1409-1415(2006) 

  50. Jia, Y. H., Tran, T. H, Kim, D. H., Oh, S. J., Park, D. H., Zhang, R. H., and Ahn, D. H., "Simultaneous organics removal and bioelecgtrochemical denitrification in microbial fuel cells", Bioprocess Biosys. Eng., 31(4), 315-321(2008) 

  51. Antolini, E., Passos, R. R., and Ticianelli, E. A., "Effects of the cathode gas diffusion layer characteristics on the performance of polymer electrolyte fuel cells", Journal of Applied Electrochemistry, 32, 383-388(2002) 

  52. Cheng, S., Liu, H., and Logan, B. E., "Increased Power Generation in a Continuous Flow MFC with Advective Flow through the Porous Anode and Reduced Electrode Spacing", Environ. Sci. Technol., 40, 2426-2432(2006) 

  53. Sun, J., Hu, Y., Bi, Z.,and Cao, Y., "Improved performance of air-cathode single-chamber microbial fuel cell for wastewater treatment using microfiltration membranes and multiple sludge inoculation", Journal of Power Sources, 187, 471-479(2009) 

  54. Clauwaert, P., Rabaey, K., Aelterman, P., Schamphelaire, L. D., Pham, T. H., Boeckx, P., Boon, N., and Verstraete, W., "Biological Denitrification in Microbial Fuel Cells", Environ. Sci. & Technol, 41(9), 3354-3360(2007) 

  55. Ghafari, S., Hasan, M., and Aroua, M. K., "Bio-electrochemical removal of nitrate from water and wastewater-A review", Bioresource Technology, 99, 3965-3974(2008) 

  56. Zhao, F., Harnisch, F., Schr der, U., Scholz, F., Bogdanoff, P., and Herrmann, I., "Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells", Electrochemistry Communications, 7(12), 1405-1410(2005) 

  57. Yu, E. H., Cheng, S., Scott, K., and Logan, B. E., "Microbial fuel cell performance with non-Pt cathode catalysts", Journal of Power Sources, 171, 275-281(2007) 

  58. Aelterman, P., Versichele, M., Genettello, E., Verbeken, K., and Verstraete, W., "Microbial fuel cells operated with iron-chelated air cathodes", Electrochimica Acta, 54(24), 5754-5760(2009) 

  59. Sharma, T., Reddy, A. L. M., Chandra, T. S., and Ramaprabhu, S., "Development of carbon nanotubes and nanofluids based microbial fuel cell", Internatinal Journal of Hydrogen Energy, 33, 6749-6754(2008) 

  60. Tsai, H. Y., Wu, C. C., Lee, C. Y., and Shih, E. P., "Microbial fuel cell performance of multiwall carbon nanotubes on carbon cloth as electrodes", Journal of Power Sources, 194(1), 199-205(2009) 

  61. Clauwaert, P., Van der Ha, D., Boon, N., Verbeken, K., Verhaege, M., Rabaey, K., and Verstraete, W., "Open air biocathode enables effective electricity generation with microbial fuel cells", Environ. Sci. Technol. 41, 7564-7569(2007) 

  62. Chen, G. W., Choi, S. J., Lee, T. H., Lee, G. Y. Cha, J. H., and Kim, C. W., "Application of biocathode in microbial fuel cells: cell performance and microbial community", Appl. Microbiol. Biotechnol. 79, 379-388(2008) 

  63. Sukkasem, C., Xu, S., Park, S., Boonsawang, P., Liu, H., "Effect of nitrate on the performance of single chamber air cathode microbial fuel cells", Water Research, 42(19), 4743-4750 (2008) 

  64. Virdis, B., Rabaey, K., Yuan, Z., and Keller, J., "Microbial fuel cells for simultaneous carbon and nitrogen removal", Water Research, 42(12), 3013-3024(2008) 

  65. Liu, H., Cheng, S., Huang, L., and Logan, B. E. "Scale-up of membrane-free single-chamber microbial fuel cells", Journal of Power Sources, 179, 274-279(2008) 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로