$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

인산용해미생물에 의한 불용성 인의 용해와 식물생장에 미치는 영향
Phosphate Solubilization and Plant Growth Promotion by Crop Associated Bacteria 원문보기

韓國土壤肥料學會誌 = Korean journal of soil science & fertilizer, v.42 no.1, 2009년, pp.29 - 36  

나정행 (전남대학교 응용생물공학부) ,  최진호 (농촌진흥청 국립원예특작과학원) ,  김영덕 (전남대학교 응용생물공학부) ,  고현선 (전남대학교 응용생물공학부) ,  박노동 (전남대학교 응용생물공학부) ,  김길용 (전남대학교 응용생물공학부)

초록
AI-Helper 아이콘AI-Helper

14종의 인산용해미생물을 근권으로부터 분하였고, 16S rRNA gene 염기서열에 의하여 동정하였다 그 중 hydroxyapatite를 첨가한 배지에서 인산용해능력이 가장 뛰어난 Acinetobacter sp., Pseudomonas orientalis, Enterobacter asburiae 3종을 선택하였다. 선택된 3종의 미생물에 의해 용해된 인산의 농도는 $200\;mg\;L^{-1}$에서부터 $2300\;mg\;L^{-1}$까지 이르렀으며, 증가된 인산 농도는 배양액의 pH와 역으로 비례하였다. HPLC를 사용하여 유기산을 측정한 결과 Acinetobacter sp.는 gluconic acid를, P. orientalis는 gluconic acid와 2-ketogluconic acid를 그리고 E. asburiae는 acetic acid와 succinic acid를 분비하였다. 한편 P. orientalis와 E. asburiae는 각각 $372\;mg\;L^{-1}$$191\;mg\;L^{-1}$IAA 분비하였고, Acinetobacter sp.는 IAA를 생성하지 못했다. 인산용해미생물이 오이의 생장에 미치는 효과를 조사한 결과, P. orientalis를 처리한 시험구가 가장 높았고, E. asburiae, Acinetobacter sp., control 순으로 나타났다. 이러한 식물생장 효과는 인산용해미생물에 의한 불용성 인산용해와 IAA 생산과 관련이 있다고 생각된다.

Abstract AI-Helper 아이콘AI-Helper

Fourteen bacterial strains were isolated from crop rhizosphere and identified as phosphate solubilizing bacteria (PSB) by 16S rRNA analysis. Only 3 strains exhibited a strong ability to solubilize insoluble phosphate in agar medium containing a hydroxyapatite. The rates of P solubilization by isolat...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • Acinetobacter sp., P orientalis, and E. asburiae was carried out at 1, 2, 5, 7 and 10 days after cultivation by HPLC analysis. The HPLC analysis of these culture filtrate revealed that four major peaks such as 1, 2, 3 and 4 were represented as gluconic acid, 2-ketogluconic acid, succinic acid, and acetic acid, ?respectively by comparing the retention times with those of the authentic standards (Fig.
  • Each pot was filled with 500 g of the mixture where a sterilized seed was placed. Five milliliters of each bacterial culture suspension (P. orientalis, E. asburiae, and Acinetobacter sp., 4 x 107 CFU ml-1) was amended to the rhizosphere of each plant in each treatment at 5 and 6 weeks after sowing and control plants received the same amount of culture broth (without bacterial inoculation). After 7 weeks, cucumber plants were harvested and fresh/dry weight of shoot and root, and N and P content in plant were measured in triplicate.
  • Growth promotion in cucumber caused by PGPR treatment may be due to the production of phytohormones. In this study, we have been able to identify IAA from the culture filtrate of PSB. Treatment of strain P.
  • shaker at 200 rpm. Samples were taken at 1, 2, 5, 7 and 10 days for the measurement of pH, P solubilization and organic acid concentration. All these experiments were carried out in triplicate.
  • , Chungbuk, Korea). The nucleotide sequence of the 16S rRNA gene was determined by Biodye Terminator cycle sequencing kit and compared with published 16S rRNA sequences using Blast search at Gene Bank Data base of NCBI (Bethesda, MD) in order to establish the identity of the isolates.

대상 데이터

  • Rhizospheres were taken at a depth of 15-20 cm from crop field in Chonnam Province, Republic of Korea. Diluted soils by sterile water at a rate of 10-5 were inoculated on hydroxyapatite (HY) agar medium (glucose 10 g; MgSO4 .
  • This study was supported by the Korea Research Foundation second step Brain Korea 21 project, Republic of Korea.
본문요약 정보가 도움이 되었나요?

참고문헌 (32)

  1. Azcon, R., G. Azcon, D. Aghilar, and J.H. Barea. 1978. Effect of plant hormones present in bacterial cultures on the formation and response to vamendomycorrhiza. New Phytol. 80:359-364 

  2. Banik, S., and B.K. Dey. 1982. Available phosphate content of and alluvial soil as influenced by inoculation of some isolated phosphate solubilizing bacteria. Plant Soil. 69:353-364 

  3. Barea, J.M., E. Navarro and E. Montoya. 1976. Production of plant growth regulators by rhizosphere phosphate-solubilizing bacteria. J. Appl. Bact. 40:129-134 

  4. Benizri, E., A. Courtade, C. Picard and A. Guckert. 1998. Role of maize exudates in the production of auxins by Pseudomonas Fluorescens M.3.1. Soil Biol. Biochem. 30:1481-1484 

  5. Brown, M.E. 1972. Plant growth substances produced by microorganisms of soil and rhizosphere. J. Appl. Bact. 35:443-451 

  6. Cheryl, L.P., and R.G. Bernard. 2002. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl. Environ. Microbiol. 68:3795-3801 

  7. Datta, M., S. Banik and R.K. Gupta. 1982. Studies on the efficacy of a phytohormone producing phosphate solubilizing Bacillus firmus in augmenting paddy yield in acid soils of Nagaland. Plant and Soil 69:365-373 

  8. Freitas, J.R., M.R. Banerjee and J.J. Germida. 1997. Phosphatesolubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica nupus L.). Biol. Fertil. Soils. 24:358-364 

  9. Gaur, A.C., and K.P. Ostwal. 1972. Influence of phosphate dissolving Bacilli on yield and phosphate uptake of wheat crop. Indian J. Exp. Biol. 10:393-394 

  10. Goldstein, A.H. 1986. Bacterial mineral phosphate solubilization:Historical perspective and future prospects. Am. J. Altern. Agric. 1:57-65 

  11. Goldstein, A.H., K. Braverman and N. Osorio. 1999. Evidence for mutualism between a plant growing in a phosphate-limited desert environment and a mineral phosphate solubilizing (MPS) rhizobacterium. FEMS Microbiol. Ecol. 30:295-300 

  12. Halder, A.K., A.K. Misra and P.K. Chakrabarty. 1991. Solubilization of inorganic phosphates by Bradyrhizobium. Indian J. Exp. Biol. 29:28-31 

  13. Halder, A.K., and P.K. Chakrabartty. 1993. Solubilization of inorganic phosphate by Rhizobium. Folia Microbiol. 38:325-330 

  14. Hilda, R., and F. Reynaldo. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv.17:319-339 

  15. Hu, H.Q., J.Z. He, X.Y. Li, and F. Liu. 2001. Effect of several organic acids on phosphate adsorption by variable charge soils of central China. Environ. Int. 26:353-358 

  16. Hussain, A., and V. Vancura. 1970. Formation of biologically active substances by rhizosphere bactieria and their effect on plant growth. Folia Microbiol. 15:468-478 

  17. Hwangbo, H., D.R. Park, W.Y. Kim, Y.S. Rim, H.K. Park, H.T. Kim, J. SunSuh and Y.K. Kim. 2003. 2-Ketogluconic acid production and phosphate solubilization by Enterobacter intermedium. Curr. Microbiol. 47:87-92. 

  18. Illmer, P., and F. Schimmer. 1992. Solubilization of inorganic phosphates by microorganisms isolated from forest soil. Soil Biol. Biochem. 24:389-395 

  19. Illmer, P., A. Barbato, and F. Schinner. 1995. Solubilization of hardly-soluble AlPO4 with P-solubilizing microorganisms. Soil Biol. Biochem. 27:265-270 

  20. Jones, D.L., and P.R. Darrah. 1994. Role of root derived organic acids in the mobilization of nutrients from the rhizosphere. Plant and Soil 166:247-257 

  21. Kim, K.Y., D. Jordan and H.B. Krishnan. 1997a. Rahnella aquatilis, a bacterium isolated from soybean rhizosphere can solubilize hydroxyapatite. FEMS Microbiol. Lett. 153:273-277 

  22. Kim, K.Y., G.A. McDonald and D. Jordan. 1997b. Solubilization of hydroxyapatite by Enterobacter agglomerans and cloned Escherichia coil in culture medium. Biol. Fertil. Soils. 24:347-352 

  23. Kloepper, J.W., K. Lifshitz and M.N. Schroth. 1988. Pseudomonas inoculants to benefit plant production. ISI Atlas Sci. Anim. Plant. 60-64 

  24. Lindow, S.E., C. Desurmont, R. Elkins, G. McGourty, E. Clark and M.T. Brandl. 1998. Occurrence of indole-3-acetic acid producing bacteria on pear trees and their association with fruit russet. Phytopathology 88:1149-1157 

  25. Liu, S.T., L.Y. Lee, C.Y. Tai, C.H. Horng, Y.S. Chang, J.H. Wolfram, R. Rogers and A.H. Goldstein. 1992. Cloning of and Erwinia herbicola gene necessary for gluconic acid production and enhanced mineral phosphate solubilization in Escherichia coli HB101. J. Bacterial. 174:5814-5819 

  26. Moghimi, A., and M.E. Tate. 1978. Does 2-ketogluconate chelate calcium in the pH range 2.4 to 6.4. Soil Biol. Biochem. 10:289-292 

  27. Satter, M.A., and A.C. Gaur. 1987. Production of auxins and gibberellins by phosphate dissolving microorganisms. Zentralbl. Microbiol. 142:393-395 

  28. Shekhar, N.C., S. Bhadauria, P. Kumar, H. Lal, R. Mondal and D. Verma. 2000. Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbil. Lett. 182:291-296 

  29. Umali-Garcia, M., D.H. Hubbell., M.H. Gaskins., F.B. Dazzo. 1980. Association of Azospirillum with grass roots. Appl. Environ. Microbiol. 39:219-226 

  30. Vandana, K., and G. Reeta. 2003. Solubilization of inorganic phosphate and plant growth promotion by cold tolerant mutants of Pseudomonas fluorescens. Microbiol. Res. 158:163-168 

  31. Olsen, S.R., and L.E. Sommers. 1982. Phosphorus. p. 403-430. In A.L. Page et al. (ed.), Method of soil analysis, Chemical and microbial properties. American Society of Agronomy, Madison, WI, U.S.A. 

  32. Yadav, K.S., and K.R. Dadarwal. 1997. Phosphate solubilization and mobilization through soil microorganisms. p. 293-308. In K.R. Dadarwal, (ed.), Biotechnological approaches in soil microorganisms for sustainable crop production. Scientific Publishers, Jodhpur, India 

저자의 다른 논문 :

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로