$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

압밀침하를 고려한 말뚝의 부마찰력 예측 프로그램 개발
A Program Development for Prediction of Negative Skin Friction on Piles by Consolidation Settlement 원문보기

韓國地盤工學會論文集 = Journal of the Korean geotechnical society, v.25 no.9, 2009년, pp.5 - 17  

김형주 (국립군산대학교)

초록
AI-Helper 아이콘AI-Helper

재하 하중에 의해 압밀 되는 지반에 관입 된 말뚝의 지지력을 예측하고자 MATLAB을 이용한 GUI환경에서 Pile NSF(Pile Negative Skin Friction)프로그램이 개발되었다. 본 연구에서 제안된 방법은 일차원 유한변위 압밀이론이 적용될 수 있도록 비선형 하중 전이법에 의한 일차원 토질-말뚝 모델 프로그램인 OpenSees 를 확장하였다. 개발된 프로그램은 압밀과정 중에 발생하는 토질-말뚝의 경계면 변화는 물론 유한 점토층의 저감이 고려되는 Mikasa의 유한변위이론을 융합하는 특성을 가지고 있다. 더 나아가 말뚝 타설 후에 재하성토에 의해 발생하는 지반의 압밀상태도 해석시에 고려할 수 있는 특징을 지니고 있다. 본 연구에서 제안된 방법에 의한 프로그램 해석은 부마찰력이 발생하는 말뚝에 대하여 말뚝 장기시험 사례 결과와 비교하여 타당성이 검증되었고, 압밀침하를 반영한 말뚝의 부마찰력 예측치는 측정된 결과와 잘 일치하고 있음을 보여주고 있다.

Abstract AI-Helper 아이콘AI-Helper

The microcomputer program PileNSF (Pile Negative Skin Friction) is developed by the authors in a graphical user interface (GUI) environment using $MATLAB^{(R)}$ for predicting the bearing capacity of a pile embedded in a consolidating ground by surcharge loading. The proposed method exten...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • It is also noteworthy to mention that Mikasa's finite strain theory has the advantage of being used in conjunction with settlement or strain data being mostly available in the field rather than on excess pore pressures with the Terzaghi theory. In this study, a finite difference program is made for a onedimensional consolidation analysis of a homogeneous clay layer that is overlain by sand or fill layers, and/or underlain by sand layers or rock (Fig. 1), that is integrated with the finite element program OpenSees (2000) for the load transfer analysis and prediction of the induced negative skin friction from the soil settlements. The integrated software program, PileNSF, thus analyzes the problem of negative skin friction on single piles in a two-step approach: (1) finite difference method for the analysis and prediction of effective soil stresses and settlements based on Mikasa's (1965) generalized one-dimensional consolidation theory in terms of finite strain, and (2) nonlinear load-transfer and finite element analysis with the open-source program OpenSees (2000) as the executable, for the prediction of pile settlements and forces that is subjected to axial load at the pile head and/or imposed displacements from the consolidation settlement of the surrounding soil layers.
  • 005year was selected. The pile material was modeled as elastic using the given cross-sectional area, section moment of inertia, and modulus of elasticity for steel pipe. The consolidation coefficient Cv was adapted from Poulos and Davis (1980) and the compressibility coefficient mv adopted from Alonso et al.
  • The microcomputer program PileNSF (Pile Negative Skin Friction) is developed by the authors in a graphical user interface environment using MATLAB for evaluating the problem of a pile embedded in a consolidating soil tiiat is subjected to surcharge loading from fill. The program developed has a significant feature of incorporating an advanced settlement theory that considers the variability of the thickness of the compressible layer during consolidation. In addition, the finite reduction of the soil-pile interface length at any time during the progress of consolidation in the clay layer is also accounted for in the calculation of the limiting shaft resistances in the compressible soil layer.

이론/모형

  • , 1997; Comodromos and Bareka, 2005). A one-dimensional (ID) soil-pile model with the load transfer method is used by Alonso et al. (1984) to predict the negative skin friction on single piles in an uncoupled analysis with the classical Terzaghi (1943) assumptions of one-dimensional consolidation theory with an elastoplastic and bilinear transfer function for the soil-pile interfece. Wong and Teh (1995) also utilized the load-transfer approach using a hyperbolic criterion for the soil spring element model at the pile shaft.
  • In this study, the backbone of the nonlinear T-z curve for clay is approximated from Reese and O'Neill's (1987) relation (Fig. 4a) and the backbone of the nonlinear T-z curve for sand is approximated from Mosher's (1984) relation (Fig. 4b), all of which are being implemented using the TzSimplel materials (Boulanger, 2003a) i효 OpenSees. The pile was modeled as elastic using the cross-section사 properties of the steel pipe material. Skin friction at the pile-fill and pile-clay interfaces were modeled using Mosher's (1984) and Reese and O'Neill's (1987) load transfer relations, respectively. A rigid end-bearing was assumed at the base where the pile was driven to beirock, and the support point at the pile tip was modeled by a pin constraint.
  • This paper presents a sine)lified one-dimensional soil-pile analytical model using the nonlinear load-transfer method that is uncoupled with the generalized one-dimensional consolidation theory in terms of finite strain by Mikasa (1965) for the prediction of negative skin friction in single piles. The microcomputer program PileNSF (Pile Negative Skin Friction) is developed by the authors in a graphical user interface environment using MATLAB for evaluating the problem of a pile embedded in a consolidating soil tiiat is subjected to surcharge loading from fill.
  • This paper suggests the use of a simplified onedimensional soil-pile analytical model using the nonlinear load-transfer method that is uncoupled with the onedimensional consolidation theory in terms of finite strain (Mikasa, 1965) for the prediction of negative skin friction in single piles. The microcomputer program PileNSF (Pile Negative Skin Friction) is developed by the authors in a graphical user interface environment for this objective.
본문요약 정보가 도움이 되었나요?

참고문헌 (24)

  1. Alonso, E.E., Josa, A., and Ledesma, A. (1984), "Negative skin friction on piles: a simplified analysis and prediction procedure", Geotechnique, Vol.34, pp.341-357 

  2. Boulanger, R. W. (2003a), The TzSimple1 Material. (http://opensees. berkeley.edu/) 

  3. Boulanger, R. W. (2003b), The QzSimple1 Material. (http://opensees. 

  4. Bjerrum, L., Johannessen, I. J., and Eide, O. (1969), Reduction of negative skin friction on steel piles to rock. Proceedings 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico City, August 25-29, Vol.2, pp.27-34 

  5. Comodromos, E. and Bareka, S. (2005), "Evaluation of negative skin friction effects in pile foundations using 3D nonlinear analysis", Computers and Geotechnics, Vol.32, No.3, pp.210-221 

  6. Fellenius, B.H. (2006), Results from long-term measurement in piles of drag load and downdrag", Canadian Geotechnical Journal, Vol.43, pp.409-430 

  7. Fellenius, B.H. (2008), "Effective stress analysis and set-up for shaft capacity of piles in clay", Honoring John Schmertmann "From research to practice in geotechnical engineering", The Geo-Institute of the American Society of Civil Engineers, ASCE Geotechnical Special Publications, GSP 180, pp.384-406 

  8. Fukuya, T., Todoroki, T., and Kasuga, M. (1982), "Reduction of negative skin friction with steel tube NF pile", Proc., 7th Southeast Asian Geotechnical Conference, Hongkong, Vol.1, pp.333-347 

  9. Indraratna, B., Balasubramaniam, A.S., Phamvan, P., and Wong, Y.K. (1992), "Development of negative skin friction on driven piles in soft Bangkok clay", Canadian Geotechnical Journal, Vol.29, No.3, pp.393-404 

  10. Jeong, S., Kim, S., and Briaud, J.L. (1997), "Analysis of downdrag on pile groups by the finite element method", Computers and Geotechnics, Vol.21, No.2, pp.143-161 

  11. Kim, H.J. and Mission, J.L. (2009), "Negative skin friction on piles based on finite strain consolidation theory and nonlinear load transfer method", Korean Society of Civil Engineers (KSCE) Journal of Civil Engineering, Vol.13, No.2, pp.107-115 

  12. Kulhawy, F.H. (1984), "Limiting tip and side resistance, Proc., Symp. On Design and Analysis of Pile Found., ASCE, New York, N.Y., pp.80-98 

  13. Mazzoni, S., McKenna, F., Scott, M.H. et al. (2006), OpenSees Command Language Manual. http://opensees.berkeley.edu/ 

  14. Mikasa, M. (1965), "The Consolidation of Soft Clay ? A New Consolidation Theory and Its Application", JSCE Prize Paper for 1964, Japan Society of Civil Engineers, pp.21-26 

  15. Mosher, R.L. (1984), "Load Transfer Criteria for Numerical Analysis of Axially Loaded Piles in Sand - Part 1: Load-Transfer Criteria", Technical Report K-84-1, US Army Engineering Waterways Experimental Station, Mississippi 

  16. OpenSees (2000), Open System for Earthquake Engineering Simulation, Pacific Earthquake Engineering Research Center, University of California, Berkeley, California. (http://opensees.berkeley.edu/) 

  17. Poulos, H.G. and Davis, E.H. (1980), Pile Foundation Analysis and Design, John Wiley & Sons, Inc., pp.265-290 

  18. Reese, L.C. and O'Neill, M.W. (1987), "Drilled Shafts: Construction Procedures and Design Methods", Report No. FHWA-HI-88-042, US Department of Transportation, Federal Highway Administration, Virginia 

  19. Terzaghi, K. (1943), Theoretical Soil Mechanics, John Wiley and Sons, New York 

  20. Tomlinson, M.J. (1986), Foundation Design and Construction, 5th Ed., Pitman Books Ltd., London, England 

  21. Verruijt, A. (1995), Theory and Applications of Transport in Porous Media (Vol. 7) - Computational Geomechanics, Kluwer Academic Publishers, The Netherlands 

  22. Vijayvergiya, V.N. (1977), "Load-movement characteristics of piles", Proceedings, Ports 77, American Society of Civil Engineers, Vol.11, pp.269-286 

  23. Walker, L.K., Le, P., and Darvall, L. (1973), "Dragdown on coated and uncoated piles", Proc. 8th International Conference on Soil Mechanics and Foundation Engineering, ICSMFE, August, Vol.2, Paper 3/41, pp.257-262 

  24. Wong, K.S., and Teh, C.I. (1995), "Negative Skin Friction on Piles in Layered Soil Deposit", Journal of Geotechnical and Geoenvironmental Engineering, American Society of Civil Engineers, Vol.121, No.6, pp.457-465 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로