$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

스멕타이트 점토의 팽창도, 층전하, 양이온 교환능에 대한 열수반응의 영향
Effect of a Hydrothermal Reaction on the Expandibility, Layer Charge, and CEC of Smectite Clay 원문보기

방사성폐기물학회지 = Journal of the Korean Radioactive Waste Society, v.8 no.3, 2010년, pp.173 - 179  

이재완 (한국원자력연구원) ,  조원진 (한국원자력연구원)

초록
AI-Helper 아이콘AI-Helper

고준위폐기물처분장에서 완충재는 오랜 기간 동안 방사성핵종의 붕괴열과 여러가지 화학조건의 지하수에 노출되며, 이러한 열수조건은 완충재물질의 차수 및 핵종저지 방벽성능에 심각한 영향을 줄 수 있다. 본 연구에서는 국산 스멕타이트를 대상으로 열수실험을 수행하고, 열수반응에 의한 스멕타이트 점토의 팽창도, 층전하, 양이온교환능의 변화를 조사하였다. 열수실험 결과, 온도와 용액 중 칼륨농도를 증가시켰을 때, 스멕타이트의 팽창도는 감소하였고, 층전하는 더 큰 음전하를 가졌으며, 양이온교환능도 감소하였다.

Abstract AI-Helper 아이콘AI-Helper

In a HLW repository, the buffer is exposed to an elevated temperature due to a radioactive decay and geochemical conditions for a long time and such a hydrothermal condition may cause a significant loss of its barrier function. This study carried out hydrothermal tests with a domestic smectite clay ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • In this study, hydrothermal tests were carried out with a domestic smectite clay. The mineralogical alteration of the smectite was identified by examining its X-ray diffraction patterns, and the effect of a hydrothermal reaction on expandibility, layer charge, and cation exchange capacity was investigated.
  • The cooled suspension was centrifuged at 10,000 rpm for 10 minutes, and then the filtered solids were freeze-dried. The mineralogical investigations for the solid samples were conducted by means of X-ray diffraction (XRD) analysis, Electron Probe Micro Analysis (EPMA), and Cation exchange capacity (CEC) measurement.
  • The layer charge was evaluated from a structural formula calculated based on 22 anion equivalents and four tetrahedral cations [20]. The structural formulae were determined from the chemical composition data of EPMA [21], where the samples for the EPMA analysis were prepared by compacting the powdered smectite into a pallet specimen. CEC was measured according to Sumner and Miller's [22] procedure using 0.

대상 데이터

  • In this study, hydrothermal tests were carried out with a domestic smectite clay. The mineralogical alteration of the smectite was identified by examining its X-ray diffraction patterns, and the effect of a hydrothermal reaction on expandibility, layer charge, and cation exchange capacity was investigated.
  • The solid sample used for the hydrothermal tests is natural smectite fractioned into the <2 μm size from bentonite [17] which was taken from Kyeongju, Korea.

이론/모형

  • Moreover, because the reacted samples were resaturated with calcium ions to remove exchangeable potassium ions prior to the XRD measurement, the interstratificational features support the occurrence of potassium ions which had been changed into a nonexchangeable form by being fixed within the newly formed illite-like layers during the hydrothermal experiments. The percentage of the smectite layer in the randomly interstratified I-S was reduced to a minimum of 56.8 % under the experimental condition of this study, when it was determined using the saddle/001 peak intensity ratio method [18]. It follows from this that the starting smectite transforms into randomly interstratified I-S under the given hydrothermal conditions.
본문요약 정보가 도움이 되었나요?

참고문헌 (26)

  1. C.H. Kang, J.E. Kuh, S.K. Kim., S.S. Kim, W.J. Cho, J.W. Choi, Y.M. Lee, J.O. Lee, Y.S. Hwang, "Highlevel Radwaste Disposal Technology Development: Geological Disposal System Development," KAERI/RR-2013/99, Korea Atomic Energy Research Institute (1999). 

  2. A. Inoue, H. Minato, and M. Utada, "Mineralogical properties and occurrence of illite/montmorillonite mixed-layer minerals formed from Miocene volcanic glass in Waga-Omono district," Clay Sci., 5: 123-136 (1978). 

  3. B. Velde, and A.M. Brusewitz, "Metasomatic and nonmetasomatic low-grade metamorphism of Ordovician metabentonites in Sweden," Geochim. Cosmochim. Acta, 46; 447-452 (1982). 

  4. W.D. Keller, R.C. Reynolds, and A. Inoue, "Morphology of clay minerals in the smectite-to-illite conversion series by scanning electron microscopy," Clays Clay Miner., 34(2); 187-197 (1986). 

  5. A. Bouchet, D. Proust, A. Meunier, and D. Beaufort, "High-charge to low-charge smectite reaction in hydrothermal alteration processes," Clay Miner., 23; 133-146 (1988). 

  6. A.M., Pytte and R.C. Reynolds, "The thermal transformation of smectite to illite," In thermal history of Sedimentary Basins, Editors Naeser N.D. and McCulloh T.H., Springer-Verlag New York, 133-140 (1989). 

  7. B. Velde, and G. Vasseur, "Estimation of the diagenetic smectite to illite transformation in timetemperature space," Amer. Mineral. 77, 967-976 (1992). 

  8. H. Wei, E. Roaldset, and M. Bjoroy, "Kinetics of smectite to illite conversion," EAPG 5th Conference, Stavanger (1993). 

  9. D. Everl, "The reaction of montmorillonite to mixedlayer clay: the effect of interlayer alkali and alkalineearth cations," Geochim. Cosmochim. Acta, 42: 1-7 (1978). 

  10. H.E. Roberson, and R.W. Lahann, "Smectite to illite conversion rates: effects of solution chemistry," Clays Clay Miner., 29: 129-135 (1981). 

  11. A. Inoue and M. Utada, "Further investigations of a conversion series of dioctahedral mica/smectite in the Shinzan hydrothermal alteration area, northeast Japan," Clays Clay Miner., 31: 401-412 (1983). 

  12. J.J. Howard, and D.M. Roy, "Development of layer charge and kinetics of experimental smectite alteration," Clays Clay Miner., 33, 81 (1985). 

  13. W.L. Huang, J.M. Longo, and D.R. Pevear, "An experimentally derived kinetic models for smectiteto-illite conversion and its use as a geothermometer," Clays and Clay Minerals 41, 162-177 (1993). 

  14. J. Cuadros, and J. Linares, "Experimental kinetics study of the smectite-to-illite transformation," Geochim. et Cos. Acta, Vol. 60, No. 3, 439 (1996). 

  15. T. Sato, M. Kuroda, S. Yokoyama, M. Tsutsui, C. Pacau, C. Ringor, K. Fukushi, T. Tanaka, S. Nakayama, "Dissolution kinetics of smectite under alkaline conditions. International meeting: Clays in natural & engineering barriers for nuclear waste confinement," March 14-18, 2005, Tours, France (2005). 

  16. A. Bauer, B. Lanson, E. Ferrage, K. Emmerich, H. Taubald, D. Schild, B. Velde, "The fate of smectite in KOH solution. American Mineralogist 91, 1313-1322 (2006). 

  17. K.S. Chun. K.S., W.J. Cho, J.O. Lee, S.S. Kim, M.J. Kang, "High-level waste disposal technology development: Engineered barrier development," KAERI/RR-1897/98, Korea Atomic Energy Research Institute (1998). 

  18. A. Inoue, A. Bouchet, B. Velde, and A. Meunier, "Convenient technique for estimating smectite layer percentage in randomly interstratified illite/smectite minerals," Clays and Clay Minerals 37, 227-234 (1989). 

  19. R.C. Reynolds, "NEWMOD-A computer program for the calculation of basal diffraction intensities of mixed-layered clay minerals," 8 Brook Road, Hanover, New Hampshire (1985). 

  20. A.C.D. Newman and G. Brown, "The chemical constitution of clays," In: Newman, A.C.D, Brown, G. (Eds.), Chemistry of Clays and Clay Minerals, Mineralogical Society, London, 1-128 (1987). 

  21. R.F. Ylagan, S.P. Altaner, and A. Pozzuoli, "Reaction mechanisms of smectite illitization associated with hydrothermal alteration from Ponza Island, Italy," Clays and Clay Minerals 48, 610-631 (2000). 

  22. M.E. Sumner and W.P. Miller, "Methods of Soil Analysis. Part 3. Chemical Methods: Cation exchange capacity and exchange coefficients," Soil Science Society of America and American Society of Agronomy (2002). 

  23. J. Hower, E.V. Eslinger, M.E. Hower, E.A. Perry, "Mechanism of burial metamorphism of argillaceous sediment," I. mineralogical and chemical evidence. Geological Society of America Bulletin 85, 827 (1976). 

  24. J.R. Boles, S.G. Franks, "Clay diagenesis in Wilcox sandstones of southwest Texas: Implications of smectite diagenesis on sandstone cementation," Journal of Sedimentary Petrology 49, 55 (1979). 

  25. D.W. Oscarson and H.B. Hume, "On the smectiteto-illite reaction," AECL-10842, Whiteshell Laboratories, Pinawa,Manitoba. (1993). 

  26. Jae Owan Lee, Jeong Hwa Park, and Won Jin Cho, "Engineering-scale Validation Test for the T-H-M Behaviors of a HLW Disposal System," J. of the Korean Radioactive Waste Society, Vol.4(2), P.197-207 (2006). 

저자의 다른 논문 :

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로