$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 발파석의 비산과 낙하를 조절하기 위한 발파 설계
Blast Design for Controlled Augmentation of Muck Pile Throw and Drop 원문보기

터널과 지하공간: 한국암반공학회지 = Tunnel and underground space, v.20 no.5 = no.88, 2010년, pp.360 - 368  

피유시 라이 (전남대학교, 인도 바나라스 힌두대학교 광산공학과) ,  양형식 (전남대학교 에너지자원공학과)

초록
AI-Helper 아이콘AI-Helper

이 논문은 발파석의 비산과 낙하를 조절하여 파쇄석이 사면의 낮은 쪽 소단에 분산될 수 있도록 한 노천발파에 대한 사례연구이다. 비산이 횡적인 분산과 파쇄석 더미의 이완을 초래하는 동안 낙하는 굴착기에 의한 굴착이 용이하도록 파쇄석 더미의 높이를 낮춰주는 역할을 한다. 이런 면에서 이 논문에서는 몇몇 발파설계 변수들을 조정하는데 주안점을 두었다. 대상 사면은 사암 벤치로서 벤치의 평균 높이는 22~24 m이다. 이 사면은 굴착심도가 14 m인 10 $m^3$ 용량의 로우프 쇼벨 작업이 가능하도록 조성되었다. 비산과 낙하를 조절한 새로운 발파설계 결과를 이 현장에서 적용되고 있던 상단(10~14 m)과 하단(12~15 m)의 이단식 발파 결과와 비교하였다. 파쇄석의 입도와 그 분포 및 쇼벨의 굴착 싸이클 시간들을 비교하였다.

Abstract AI-Helper 아이콘AI-Helper

The paper presents a case study from a surface mine where the controlled augmentation of throw and drop of the blasted muck piles was warranted to spread the muck piles on the lower berm of the bench. While the augmentation of throw increased the lateral spread and the looseness of the broken muck, ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • To commence with, the baseline blast data and results were recorded by conducting two blasts on the said bench while it was worked in two separate slices (as described in section 2). The important baseline parameters and data are tabulated in Table 1. Thereafter, a series of blasts were conducted on the combined bench, 22-24 m high to meet the slated objectives. The salient blast parameters and data of these blasts are summarized in Table 2.
  • Typically an image frame could capture 250-300 broken rock fragments. Analysis of almost 25-30 images for each muck pile was considered suitable for yielding a statistically representative sample for characterizing the fragmentation in one muck pile. These guidelines are per the recommendations published by various researchers (Reid, 1976; Maerz et al.
  • Furthermore, the procurement of larger sized shovels, with greater digging reach was not an economically viable proposition. Giving due cognizance to these issues, the current research project was undertaken to with the objective of modifying the important blast design parameters for blasting the combined bench (22-24 m high) to augment the throw in a controlled manner, which in turn, ought to laterally spread the muck pile and drop it down for safe and convenient excavation of the muck pile by the specified rope shovel. The desired shape of the muck pile after controlled augmentation of throw and drop is illustrated in Fig.
  • Such gigantic blasts are always endangered with ground vibrations, which called for a detailed study before attempting the blasts at field-scale. Accordingly, the predictor equations were established by conducting trial blasts.
  • Needless to state that with the use of computers, the quantification process has become largely simplified, quick and almost inexpensive. The basis of this technique is to capture scaled images of the blasted muck pile using a high resolution camera in the field, and then to digitize and measure the delineated fragments to provide a measure of the particle size distribution.
  • Blast casting is an established technique to move a substantial percentage (40-80%) of the overburden rocks to the disposal site inside the pit using the explosives. The technique aims at controlled amplification of throw distances by using the explosive energy. On the other hand, in normal rock blasting operations the broken rock should be thrown only far enough to allow room for expansion of the broken rock.
  • To measure the fragment size in post-blasted muck piles, image capturing, processing and analysis technique was deployed. The imaging technique has been in use in the field of blasting for last almost two and a half decades.

대상 데이터

  • The stripping ratio was about 1:3 and annual coal production was almost 10 Mte. It consisted of eleven overburden benches and 3 coal seams. The mine belongs to the Singrauli coa3-coal seams separated by substantial overburden partings.
  • The overburden bench, on which the blasting studies were conducted, was 22-24 m thick (occasionally 28 m at certain locations). It consisted of medium to coarse-grained sandstone with uniaxial compressive strength of 10-15 MPa, tensile strength of 1-2 MPa and shear strength of 1-5 MPa. The bench was fairly uniform and did not possess any significant geological anomaly.
  • The mine, where the studies were conducted, is one of the largest and well-mechanized surface coal mines, in India, having large capacity HEMMs including 4 draglines. A major fault divided the mine into 2-working sections; east and west section.

이론/모형

  • 5 m long, painted in brown color) was placed in the image frames for calibration. For the purpose of processing and analysis of captured images to characterize the fragment sizes in the blasted muck piles, commercial state-of-art image analysis software FragalystTM was used.
  • The fixing up of burden value was done by engineering calculation as per Konya’s formula for estimation of burden (Konya, 1995) after taking into account the related rock parameters, geological properties and explosive factors.
본문요약 정보가 도움이 되었나요?

참고문헌 (15)

  1. Chironis, N.P., 1981, Dragline computer improves control, Coal Age, pp. 108-112. 

  2. Dupree, P.D., 1987, Applied drilling and blasting techniques for blast casting at Trapper mine, potential to save on overburden removal, Mining Eng., V. 26, No. 1, pp. 13-15. 

  3. Exadaktylos, G.E. and C.E. Tsoutrelis, 1991, Fragmentation analysis using the photographic method, Int. Journal of Sur. Min. & Reclamation, V.5, pp. 55-64. 

  4. Giltner, S.J. and P.N. Worsey, 1986, Blast monitoring using high speed video research equipment, Proc. Am. Conf. on Expl. & Blasting Techniques, SEE, pp. 178-192. 

  5. Jimeno, C.L., E.L. Jimeno and F.J.A. Carcedo, 1995, Drilling and Blasting of Rocks, A.A. Balkema, Rotterdam, the Netherlands. 

  6. Konya, C.J., 1995, Blast Design, Intercontinental Development Co., Ohio 44064, USA. 

  7. Maerz, H.N., J.A. Franklin, L. Rothenburg and D.L. Coursen, 1987, Measurement of rock fragmentation by digital photo analysis, 5th Int. Cong. Int. Soc. Rock Mech., pp. 687-692. 

  8. Palangio, T.C. and J.A. Franklin, 1996, Practical guidelines for lighting and photography, Proc. Fragblast 5, Montreal, Canada, pp. 111-114. 

  9. Rai, P. and F.L. Imperial, 2005, Mesh area vis-a-vis blast performance in a limestone quarry - a case study., Fragblast, Vol. 9, No.4, pp. 219-232 

  10. Reid, P.E., 1976, Fragmentation analysis and its use in blasting cost optimization programs in open pit mining, B.Sc. thesis, Queen's University, Kingston, Ontario, Canada. 

  11. Rollins, R.R. and R.W. Givens, 1987, Blast casting at an Eastern strip mine, AIME Trans., V.282, pp. 1871-1876. 

  12. Scott, A., A. Cocker, N. Djordjevic, M. Higgins, D. La Rosa, K.S. Sarma and R. Wedmaiser, 1996, Open Pit Blast Design Analysis and Optimization, JKMRC monograph series in mining and mineral processing, (Eds. A. Scott and T.J. Napier, Munn.) 

  13. Singh, D.P., M.M. Singh & A. Katkar, 2003, Blast casting in surface excavations-A global scenario, Min. Tech., pp. 55-59. 

  14. Tracy, J.M., 1985, Increased production through cast blasting in surface coal mines, J. Exp. Eng., V.3, No. 2, pp. 16-23. 

  15. Wang, W., Bergholm, F. and Stephansson, O., 1996, Image analysis of fragment size and shape, Proc. Fragblast-5, Montreal, pp. 233-243. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로