$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

초록
AI-Helper 아이콘AI-Helper

대부분 척수손상 모델에서의 척수 손상 정도 평가는 자기공명 영상 등을 통한 유발 후 평가를 실시하고 있으며, 유발 전 평가를 위해 풍선 카테타에 주입된 공기 양을 기준한 예가 있으나 종 특이성과 개체 차이를 고려하지 못하는 단점이 있다. 이러한 단점을 극복한 척수손상 기준모델을 제시하기 위해 본 실험을 실시하였다. 방사선 평가를 통해 요추 1 번 척수강 높이가 8 mm로 측정된 임상적으로 건강한 비글견 8 마리를 풍선카테타의 직경과 척수 압박시간을 기준으로 4개 군 (4 mm/3 시간, 4 mm/6 시간, 4 mm/12 시간 그리고 6 mm/3 시간)으로 구분하였다. 손상 정도는 행동 관찰, 자기공명영상 해석, 체성감각유발전위평가 그리고 병리조직검사를 실시하여 평가하였다. 실험결과, 행동평가와 체성감각유발전위평가는 단지 손상 유발 여부만 지시할 뿐 정도 평가에는 유용하지 못하였다. 자기공명영상 평가에서 척수손상 부위는 단시간반전회복영상과 T2강조영상에서 불균질한 고신호강도 영역으로 관찰되었다. 고신호강도 영역은 삽입된 풍선 직경과 압박시간 증가에 따라 보다 확장되어 관찰되었으며, 이러한 소견은 공포화 등의 손상부위 증가와 카스파제-3 및 PARP 면역반응 세포의 수적 증가로 나타난 병리조직검사 결과와 일치하였다. 이러한 결과로 미루어 정형화된 척수손상 모델 유발을 위한 척수강 직경과 풍선카테타 직경 그리고 압박시간의 변수 이용과 손상 정도 평가를 위해 자기공명영상은 매우 유용할 것으로 판단된다.

Abstract AI-Helper 아이콘AI-Helper

Previous studies could not offer available guideline to decide size of balloon and grade of injury before induction of spinal cord injury (SCI) because grade of SCI was assessed after inserting a catheter and each experimental animal were different in body size and weight as well as in species. This...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • (17) reported that T1 and T2WI had the poorest diagnostic performance; STIR images were best for predicting hemorrhage and axonal injury. Accordingly, T1 and T2WI, enhanced T1WI and STIR image were use to compare with histopathologic findings in this study. As Purdy et al.
  • Behaviors outcomes, SEPs, and MRI of all groups were examined at pre-experiment day, day 1 and week 1 after induction of SCI.
  • For this reason, this study was attempted to provide guideline for standardized SCI model. In this study, diameter of balloon that was not volume of inflation, the height of spinal canal and duration of compression were used as parameter that decide grade of SCI and behavior outcome, somatosensory evoked potential (SEPs), MRI and histopathological examination were performed to assess degree of SCI.
  • For this reason, this study was attempted to provide guideline for standardized SCI model. In this study, diameter of balloon that was not volume of inflation, the height of spinal canal and duration of compression were used as parameter that decide grade of SCI and behavior outcome, somatosensory evoked potential (SEPs), MRI and histopathological examination were performed to assess degree of SCI.
  • In this study, guideline to standardize canine SCI model was produced as balloon diameter was selected by radiography and results was compared each others. In previous studies, SCO that measured on MRI or CT or volume of balloon were used as important indicator to induce gradable SCI model (8-10,16,17).
  • Behaviors outcomes and SEPs were not available to assess grade of SCI and those only indicate SCI. The Olby scoring system that was modified for dogs from BBB open field scoring system (3) was used to assess behavior outcomes in this study. Olby scores of all groups except 4 mm/3hrs were 1.
  • This study could establish regular standard between experimental animal and balloon as performing radiography to select balloon diameter before induction of SCI. The two different balloon diameters that were half and three quarter diameter of height of spinal canal were used in this study. Each size caused different results corresponding to ration between balloon diameter and height of spinal canal on MRI and histopathologic findings.
  • The previous guideline, however, could not give information about SCI grade before performing MRI or CT or did not consider species and size of each experimental animal. This study could establish regular standard between experimental animal and balloon as performing radiography to select balloon diameter before induction of SCI. The two different balloon diameters that were half and three quarter diameter of height of spinal canal were used in this study.
  • This study have provided the guideline to induce standardized SCI model as using radiographic parameter before induction of SCI and comparing MRI with histopathological findings. The ratio of total damaged region on histopatholofical findings was well corresponded to the diameter of balloon that was selected by radiograpy or the compression time.

대상 데이터

  • A 5-F angioballoon catheter (ATB® advance® PTA Dilatation Catheter, COOK®, USA) was used in this study.
  • 5-T superconducting magnet (General Electric Medical Systems Division, Milwaukee, WI). T1WI (TR/TE, 500/9.6; slice thickness, 4 mm; spacing 0.4 mm) and T2WI (TR/TE, 3500/110; slice thickness, 4 mm; spacing 0.4 mm) and STIR images (TR/TE/TI, 4475/50/140; slice thickness, 4 mm; spacing 0.4 mm) were obtained after deflation of the balloon. Gadodiamide (Omniscan®, Nycomed Amersham, Norway) enhanced T1WI was obtained and compared with the nonenhanced.
  • A 5-F angioballoon catheter (ATB® advance® PTA Dilatation Catheter, COOK®, USA) was used in this study. The balloons were 4 mm or 6 mm diameter and 4 cm in length. The dogs were assigned to four groups according to diameter of balloon and duration of compression: 4 mm/3hrs (n = 2), 4 mm/6hrs (n = 2), 4 mm/12hrs (n = 2), 6 mm/3hrs (n = 2) group.
본문요약 정보가 도움이 되었나요?

참고문헌 (25)

  1. Bao F, John SM, Chen Y, Mathison RD, Weaver LC. The tripeptide phenylalanine-(D) glutamate-(D) glycine modulates leukocyte infiltration and oxidative damage in rat injured spinal cord. Neuroscience 2006; 140: 1011-1022. 

  2. Barrett KL, Willingham JM, Garvin JA, Willingham MC. Advences in cytochemical methods for detection of apoptosis. J Histochem Cytochem 2001; 49: 821-832. 

  3. Basso DM, Beattie MS, Bresnahan JC. A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 1995; 12: 1-21. 

  4. Basso DM, Beattie MS, Bresnahan JC. Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transaction. Exp Neurol 1996; 136: 244-256. 

  5. Bruce JC, Oatway MA, Weaver LC. Chronic pain after clipcompression injury of the rat spinal cord. Exp Neurol 2002; 178, 33-48. 

  6. Carlson GD, Gorden CD, Nakazawa S, Wada E, Smith JS, LaManna JC. Sustained spinal cord compression: part II: effect of methylprednisolone on regional blood flow and recovery of somatosensory evoked potentials. J Bone Joint Surg Am 2003; 85: 95-101. 

  7. Carlson GD, Gorden CD, Oliff HS, Pillai JJ, LaManna JC. Sustained spinal cord compression: part I: time-dependent effect on long-term pathophysiology. J Bone Joint Surg Am 2003; 85: 86-94. 

  8. Fukuda S, Nakamura T, Kishigami Y, Endo K, Azuma T, Fujikawa T, Tsutsumi S, Shimizu Y. New canine spinal cord injury model free from laminectomy. Brain Res Brain Res Protoc 2005; 14: 171-180. 

  9. Lee JH, Choi CB, Chung DJ, Kang EH, Chang HS, Hwang SH, Han H, Choe BY, Sur JH, Lee SY, Kim HY. Development of an improved canine model of percutaneous spinal cord compression injury by balloon catheter. J Neurosci Methods 2008; 167: 310-316 

  10. Lim JH, Jung CS, Byeon YE, Kim WH, Yoon JH, Kang KS, Kweon OK. Establishment of a canine spinal cord injury model induced by epidural balloon compression. J Vet Sci 2007; 8, 89-94. 

  11. Nunez G, Benedict MA, Hu Y, Inohara N. Caspases: the proteases of the apoptotic pathway. Oncogene 1998; 17: 3237-3245. 

  12. Olby NJ, De Risio L, Munana KR, Wosar MA, Skeen TM, Sharp NJ, Keene BW. Development of a functional scoring system in dogs with acute spinal cord injuries. Am J Vet Res 2001; 62: 1624-1628. 

  13. Oro JJ, Gibbs SR, Haghighi SS. Balloon device for experimental graded spinal cord compression in the rat. Spinal Disorders 1999; 12: 257-261 

  14. Poncelet L, Michaux C, Blligand M. Somatosensory potentials in dogs with naturally acquired thoracolumbar spinal cord disease. Am J Vet Res 1993; 54: 1935-1941. 

  15. Poncelet L, Michaux C, Blligand M. Study of spinal cord evoked injury potential by use of computer modeling and in dogs with naturally acquired thoracolumbar spinal cord compression. Am J Vet Res 1998; 59: 300-306. 

  16. Purdy PD, Duong RT, white 3rd CL, Baer DL, Reichard RR, Pride GL Jr, Adams C, Miller S, Hladik CL, Yetkin Z. Percutaneous translumbar spinal cord compression injury in a dog model that uses angioplasty balloons: MR imaging and histopathologic findings. Am J Neuroradiol 2003; 24: 177-184. 

  17. Purdy PD, white 3rd CL, Baer DL, Frawley WH, Reichard RR, Pride GL Jr, Adams C, Miller S, Hladik CL, Yetkin Z. Percutaneous translumbar spinal cord compression injury in dogs from an angioplasty balloon: MR and histopathologic changes with balloon size and compression times. Am J Neuroradiol 2004; 25: 1435-1442. 

  18. Shi SR, Chaiwun B, Young L, Cote RJ, Taylor CR. Antigen retrieval technique citrate buffer or urea solution for immunohistochemical demonstration of androgen receptor in formalinfixed paraffin sections. J Histochem Cytochem 1993; 41: 1599-1604. 

  19. Shores A, Redding RW, Knecht CD. Spinal-evoked potentials in dogs with acute compressive thoracolumbar spinal cord disease. Am J Vet Res 1987; 48: 1525-1530. 

  20. Smulson ME, Pang D, Jung M, Dimtchev A, Chasovskikh S, Spoonde A, Simbulan-Rosenthal C, Rosenthal D, Yakovlev A, Dritschilo A. Irreversible binding of poly-(ADP) ribose polymerase cleavage product to DNA ends revealed by atomic force microscopy: possible role in apoptosis. Cancer Res 1998; 58: 3495-3498. 

  21. Smyth PG, Berman SA. Markers of apoptosis: methods for elucidating the mechanism of apoptotic cell death from the nervous system. Biotechniques 2002; 32: 648-665. 

  22. Takenouchi T, Setoguchi T, Yone K, Komiya S. Expression of apoptosis signal-regulating kinase 1 in mouse spinal cord under chronic mechanical compression: possible involvement of the stress-activated mitogen activated protein kinase pathways in spinal cord cell apoptosis. Spine 2008; 33: 1943-1950. 

  23. Trucco C, Oliver FJ, de Murcia G, Menissier-de Murcia J. DNA repair defect in poly (ADP-ribose) polymerase-deficient cell lines. Nucleic Acids Res 1998; 26: 2644-2649. 

  24. Vanicky I, Urdzikova L, Saganova K, Cizkova D, Galik J. A simple and reproducible model of spinal cord injury induced by epidural balloon inflation in the rat. J Neurotrauma 2001; 18: 1399-1407 

  25. Wu XH, Yang SH, Duan DY, Cheng HH, Bao YT, Zhang Y. Anti-apoptotic effect of insulin in the control of cell death and neurologic deficit after acute spinal cord injury in rats. J Neurotrauma 2007; 24: 1502-1512. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로