$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 리튬 이차전지의 흑연 음극 표면피막 생성기구와 전해질과의 상관성
Mechanism of Surface Film Formation on Graphite Negative Electrodes and Its Correlation with Electrolyte in Lithium Secondary Batteries 원문보기

전기화학회지 = Journal of the Korean Electrochemical Society, v.13 no.1, 2010년, pp.19 - 33  

정순기 (순천향대학교 나노화학공학과)

초록
AI-Helper 아이콘AI-Helper

초기 충전 과정에서 흑연 음극에 생성되는 표면피막은 리튬 이차전지의 중요한 구성 요소로 전지 반응은 표면피막의 본질에 크게 영향을 받는다. 따라서 표면피막의 물리화학적 성질을 이해하는 것은 매우 중요하다. 한편, 표면피막의 형성 반응은 흑연/전해질 계면에서 진행하는 매우 복잡한 계면 현상이며, 표면피막은 반응성이 높고 공기 중에서 불안정하기 때문에 리튬 이차전지의 전극 표면을 연구하는데 있어서 in-situ 실험 기술은 매우 중요하다. 이와 같은 점에서 전위가 제어된 상태에서 다양한 전기화학 반응이 진행하는 전극/용액 계면을 직접 관찰할 수 있는 전기화학적 원자간력 현미경(Electrochemical Atomic Force Microscopy, ECAFM)은 매우 유용한 도구이다. 본 총설에서는 흑연 음극에 생성되는 표면피막의 본질적 이해에 중점을 두어 표면피막의 생성기구 및 전해질과의 상관성에 관하여 in-situ ECAFM 분석 결과를 중심으로 하여 정리하였다.

Abstract AI-Helper 아이콘AI-Helper

The surface film, which is formed on graphite negative electrodes during the initial charging, is a key component in lithium secondary batteries. The battery reactions are strongly affected by the nature of the surface film. It is thus very important to understand the physicochemical properties of t...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
리튬이차전지란? 리튬이차전지란 리튬의 산화·환원반응을 전극반응으로 이용하여에너지를 저장 및방출할 수있는 디바이스이다.1)충전 과정에서는 양극(LiCoO2 등의 전이금속 산화물)이 산화되며 탈리된 리튬 이온이 음극(흑연 등의 탄소재료)에서 환원되어 삽입되며 외부로부터의 전기에너지를 화학에너지의 형태로 저장하고, 방전 과정에서는 음극이 산화되며 탈리된 리튬 이온이 양극에서 환원되어 삽입되며 화학에너지가 전기에너지로 변환되어 방출된다.
흑연 음극에서 리튬 이온의 삽입, 탈리 반응은 어느 영역에서 진행되는가? 이와 같은 전해질의 분해 반응을 리튬 이차전지의 음극재로서 널리 사용되고 있는 흑연을 예로 들어 생각해보도록 한다. 흑연 음극에서는 리튬 이온의 삽입(intercalation)·탈리(de-intercalation) 반응이 0.0~0.25 V(vs. Li/Li+) 영역에서 진행하는데,3-6) 이것은 열역학적으로 매우 강한 환원 분위기이기 때문에 이 영역에서 전해질이 안정하게 존재하는 것은 기대하기 어렵다.
리튬이차전지의 충전, 방전과정에 대해 설명하라. 리튬이차전지란 리튬의 산화·환원반응을 전극반응으로 이용하여에너지를 저장 및방출할 수있는 디바이스이다.1)충전 과정에서는 양극(LiCoO2 등의 전이금속 산화물)이 산화되며 탈리된 리튬 이온이 음극(흑연 등의 탄소재료)에서 환원되어 삽입되며 외부로부터의 전기에너지를 화학에너지의 형태로 저장하고, 방전 과정에서는 음극이 산화되며 탈리된 리튬 이온이 양극에서 환원되어 삽입되며 화학에너지가 전기에너지로 변환되어 방출된다.2) 이런 원리로 작동하는 리튬 이차전지의 큰 특징 중 하나는 에너지 밀도가 높다는 것인데 그 이유는 음극 반응에 있다고 해도 과언이 아니다.
질의응답 정보가 도움이 되었나요?

참고문헌 (70)

  1. D. Linden, “Handbook of Batteries”, McGraw-Hill, New York (1995). 

  2. M. Winter and J. O. Besenhard, M. E. Spahr, and P. Novak, ‘Insertion electrode materials for rechargeable lithium batteries’ Adv. Mater., 10, 725 (1998). 

  3. J. R. Dahn, ‘Phase-diagram of $Li_xC_6$ ’ Phys. Rev., B44, 9170 (1991). 

  4. T. Ohzuku, Y. Iwakoshi, and K. Sawai, ‘Formaion of lithium-graphite intercalation compounds in nonaqueous electrolytes and their application as a negative electrode for lithium ion (shuttlecock) cell’ J. Electrochem. Soc., 140, 2490 (1993). 

  5. Z. Jiang, M. Alamgir, and K. M. Abraham, ‘The electrochemical intercalation of Li into graphite in Li/polymer electrolyte/graphite cells’ J. Electrochem. Soc., 142, 333 (1995). 

  6. M. Inaba, H. Yoshida, Z. Ogumi, T. Abe, Y. Mizutani, and M. Asano, ‘In situ Raman study on electrochemical Li intercalation into graphite’ J. Electrochem. Soc., 142, 20 (1995). 

  7. A. Herold, ‘Recherches sur les composes dinsertion du graphite’ Bull. Soc. Chim. Fr., 187, 999 (1955). 

  8. R. Fong, U. von Sacken, and J. R. Dahn, ‘Studies of lithium intercalation into carbons using nonaqueous electrochemical cells’ J. Electrochem. Soc., 137, 2009 (1990). 

  9. 0E. Peled, “Handbook of Battery Materials”, 419, Wiley-VCH, Weinheim (1999). 

  10. E. Peled, ‘The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems? The solid electrolyte interphase Model’ J. Electrochem. Soc., 126, 2047 (1979). 

  11. R. Yazami and D. Guerard, 'Some aspects on the ppeparation, structure and physical and electrochemical properties of $Li_xC_6$ ’ J. Power Sources, 43-44, 39 (1993). 

  12. T. Tran and K. Kinoshita, ‘Lithium intercalation deintercalation behavior of basal and edge planes of highly oriented pyrolytic-graphite and graphite powder’ J. Electroanal. Chem., 386, 221 (1995). 

  13. A. Funabiki, M. Inaba, and Z. Ogumi, ‘AC impedance analysis of electrochemical lithium intercalation into highly oriented pyrolytic graphite’ J. Power Sources, 68, 227 (1997). 

  14. D. Bar-Tow, E. Peled, and L. Burstein, ‘A study of highly oriented pyrolytic graphite as a model for the graphite anode in Li-ion batteries’ J. Electrochem. Soc., 146, 824 (1999). 

  15. E. Pled, D. Bar-Tow, A. Merson, A. Gladkich, L. Burstein, and D. Golodnitsky, ‘Composition, depth profiles and lateral distribution of materials in the SEI built on HOPG-TOF SIMS and XPS studies’ J. Power Sources, 97-98, 52 (2001). 

  16. K. Edstrom, M. Herstedt, and D. P. Abraham, ‘A new look at the solid electrolyte interphase on graphite anodes in Li-ion batteries’ J. Power Sources, 153, 380 (2006). 

  17. O. Chusid (Youngman), Y. E. Ely, D. Aurbach, M. Babai, and Y. Carmeli ‘Electrochemical and spectroscopic studies of carbon electrodes in lithium battery electrolyte systems’ J. Power Sources, 43-44, 47 (1993). 

  18. Y. Ein-Eli, B. Markovsky, D. Aurbach, Y. Carmeli, H. Yamin, and S. Luski, ‘The dependence of the performance of Li-C intercalation anodes for Li-ion secondary batteries on the electrolyte solution composition’ Electrochim. Acta, 

  19. D. Aurbach, Y. Ein-Eli, O. Chusid (Youngman), Y. Carmeli, M. Babai, and H. Yamin, ‘The correlation between the surface chemistry and the performance of Li-carbon intercalation snodes for rechargeable rocking-chair Type Batteries’ J. Electrochem. Soc., 141, 603 (1994). 

  20. D. Aurbach, Y. Ein-Eli, B. Markovsky, A. Zaban, S. Luski, Y. Carmeli, and H. Yamin, ‘The study of electrolyte solutions based on ethylene and diethyl carbonates for rechargeable Li batteries’ J. Electrochem. Soc., 142, 2882 (1995). 

  21. Y. Ein-Eli, S. R. Thomas, V. Koch, D. Aurbach, B. Markovsky, and A. Schechter, ‘Ethylmethylcarbonate, a promising solvent for Li-ion rechargeable batteries’ J. Electrochem. Soc., 143, L273 (1996). 

  22. D. Aurbach, B. Markovsky, A. Schechter, and E. Ein-Eli, ‘A comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate-dimethyl carbonate mixtures’ J. Electrochem. Soc., 143, 3809 (1996). 

  23. Y. Ein-Eli, S. F. McDevitt, D. Aurbach, B. Markovsky, and A. Schechter, ‘Methyl propyl carbonate: A promising single solvent for Li-ion battery electrolytes’ J. Electrochem. Soc., 144, L180 (1997). 

  24. D. Aurbach, A. Zaban, Y. Ein-Eli, I. Weissman, O. Chuid, B. Markovsky, M. Levi, E. Levi, A. Schechter, and E. Granot, ‘Recent studies on the correlation between surface chemistry, morphology, three-dimensional structures and 

  25. D. Aurbach, M. D. Levi, E. Levi, and A. Schechter, ‘Failure and stabilization mechanisms of graphite electrodes’ J. Phys. Chem. B, 101, 2195 (1997). 

  26. D. Aurbach, M. D. Levi, E. Levi, H. Teller, B. Markovsky, and G. Salitra, ‘Common electroanalytical behavior of Li intercalation processes into graphite and transition metal oxides’ J. Electrochem. Soc., 145, 3024 (1998). 

  27. D. Aurbach, B. Markovsky, I. Weissman, E. Levi, and Y. Ein-Eli, ‘On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries’ Electrochim. Acta, 45, 67 (1999). 

  28. D. Aurbach, ‘Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries’ J. Power Sources, 89, 206 (2000). 

  29. D. Aurbach, J. S. Gnanaraj, M. D. Levi, E. A. Levi, J. E. Fischer, and A. Claye, ‘On the correlation among surface chemistry, 3D structure, morphology, electrochemical and impedance behavior of various lithiated carbon electrodes’ 

  30. C. Menachem, E. Peled, L. Burstein, and Y. Rosenberg, ‘Characterization of modified NG7 graphite as an improved anode for lithium-ion batteries’ J. Power Sources, 68, 277 (1997). 

  31. E. Peled, D. Golodnitsky, C. Menachem, and D. Bar-Tow, ‘An advanced tool for the selection of electrolyte components for rechargeable lithium batteries’ J. Electrochem. Soc., 145, 3482 (1998). 

  32. Z. Ogumi, A. Sano, M. Inaba, and T. Abe, ‘Pyrolysis/gas chromatography/mass spectroscopy analysis of the surface film formed on graphite negative electrode’ J. Power Sources, 97-98, 156 (2001). 

  33. J. O. Besenhard, M. Winter, J. Yang, and W. Biberacher, ‘Filming mechanism of lithium-carbon anodes in organic and inorganic electrolytes’ J. Power Sources, 54, 228 (1995). 

  34. M. Winter, G. H. Wrodingg, J. O. Besenhard, W. Biberacher, and P. Novak, ‘Dilatometric investigations of graphite electrodes in nonaqueous lithium battery electrolytes’ J. Electrochem. Soc., 147, 2427 (2000). 

  35. M. Inaba, Z. Siroma, A. Funabiki, Z. Ogumi, T. Abe, Y. Mizutani, and M. Asano, ‘Electrochemical scanning tunneling microscopy observation of highly oriented pyrolytic graphite surface reactions in an ethylene carbonate-based electrolyte solution’ Langmuir, 12, 1535 (1996). 

  36. M. Inaba, Z. Siroma, Y. Kawatate, A. Funabiki and Z. Ogumi, ‘Electrochemical scanning tunneling microscopy analysis of the surface reactions on graphite basal plane in ethylene carbonate-based solvents and propylene carbonate’ J. Power Sources, 68, 221 (1997). 

  37. M. Inaba, Y. Kawatate, A. Funabiki, S.-K. Jeong, T. Abe, and Z. Ogumi, ‘STM study on graphite/electrolyte interface in lithium-ion batteries: solid electrolyte interface formation in trifluoropropylene carbonate solution’ Electrochim. Acta, 

  38. M. Inaba, Y. Kawatate, A. Funabiki, S.-K. Jeong, T. Abe, and Z. Ogumi, ‘STM study of well-defined graphite/electrolyte interface polarized in propylene carbonate solution containing 12-crown-4’ Electrochemistry, 67, 1153 (1999). 

  39. Z. Ogumi, S.-K. Jeong, M Inaba, and T. Abe, ‘Surface film formation on graphite negative electrodes in rechargeable lithium batteries’ Macromol. Symp., 156, 195 (2000). 

  40. S.-K. Jeong, M. Inaba, T. Abe, and Z. Ogumi, ‘Surface film formation on graphite negative electrode in lithiumion batteries: AFM study in an ethylene carbonate-based solution’ J. Electrochem. Soc., 148, A989 (2001). 

  41. S.-K. Jeong, M. Inaba, R. Mogi, Y. Iriyama, T. Abe, and Z. Ogumi, ‘Surface film formation on a graphite negative electrode in lithium-ion batteries: Atomic force microscopy study on the effects of film-forming additives in propylene carbonate solutions’ Langmuir, 17, 8281 (2001). 

  42. Z. Ogumi, M. Inaba, T. Abe, and S.-K. Jeong, “Studies in Surface Science and Catalysis”, 929, Elsevier Science B.V., Amsterdam (2001). 

  43. S.-K. Jeong, M. Inaba, Y. Iriyama, T. Abe, and Z. Ogumi, ‘Surface film formation on a graphite negative electrode in lithium-ion batteries: AFM study on the effects of cosolvents in ethylene carbonate-based solutions’ Electrochim. Acta, 47, 1975 (2002). 

  44. S.-K. Jeong, M. Inaba, Y. Iriyama, T. Abe, and Z. Ogumi, ‘AFM study of surface film formation on a composite graphite electrode in lithium-ion batteries’ J. Power Sources, 119-121, 555 (2003). 

  45. W. Huang and R. Frech, ‘In situ Raman studies of graphite surface structures during lithium electrochemical intercalation’ J. Electrochem. Soc., 145, 765 (1998). 

  46. S.-K. Jeong, ‘AFM study on surface film formation on a graphite negative electrode in a $LiPF_6$ -based non-aqueous solution’ J. Academia-Industrial Technology, 7, 1313 (2006). 

  47. H. X. You, J. M. Lau, S. Zhang, and L. Yu, ‘Atomic force microscopy imaging of living cells: a preliminary study of the disruptive effect of the cantilever tip on cell morphology’ Ultramicroscopy, 82, 297 (2000). 

  48. M. Morita, Y. Asai, N. Yoshimoto, and M. Ishikawa, ‘A Raman spectroscopic study of organic electrolyte solutions based on binary solvent systems of ethylene carbonate with low viscosity solvents which dissolve different lithium salts’ J. Chem. Soc., Faraday Trans., 94, 3451 (1998). 

  49. B. Klassen, R. Aroca, M. Nazri, and G. A. Nazri, ‘Raman spectra and transport properties of lithium perchlorate in ethylene carbonate based binary solvent systems for lithium batteries’ J Phys. Chem. B, 102, 4795 (1998). 

  50. H. Yoshida, T. Fukunaga, T. Hazama, M. Mizutani, and M. Yamachi, ‘Degradation mechanism of alkyl carbonate solvents used in lithium-ion cells during initial charging’ J. Power Sources, 68, 311 (1997). 

  51. S. Mori, H. Asahina, H. Suzuki, A. Yonei, and K. Yokoto, ‘Chemical properties of various organic electrolytes for lithium rechargeable batteries: 1. Characterization of passivating layer formed on graphite in alkyl carbonate solutions’ J. Power Sources, 68, 59 (1997). 

  52. Y. Yamada, Y. Iriyama, T. Abe, and Z. Ogumi, ‘Kinetics of lithium ion transfer at the interface between graphite and liquid electrolytes: effects of solvent and surface film’ Langmuir, 25, 12766 (2009). 

  53. F. Sagane, T. Abe, and Z. Ogumi, ‘ $Li^+$ -ion Transfer through 

  54. Z. Ogumi, T. Abe, T. Fukutsuka, S. Yamate, and Y. Iriyama, ‘Lithium-ion transfer at interface between carbonaceous thin film electrode/electrolyte’ J. Power Sources, 127, 72 (2004). 

  55. T. Saeki, H. Ohtani, A. Ito, K. Tanaka, and O. Hatozaki, “Extended Abstracts of the 50th Battery Symposium”, 169, Kyoto, Japan (2009). 

  56. Y. Yamada, Y. Koyama, T. Abe, and Z. Ogumi, ‘Correlation between charge-discharge behavior of graphite and solvation structure of the lithium ion in propylene carbonatecontaining electrolytes’ J. Physical Chemistry C, 113, 8948 (2009). 

  57. K. Xu, ‘Charge-transfer process at graphite/electrolyte interface and the solvation sheath structure of $Li^+$ in nonaqueous electrolytes’ J. Electrochem. Soc., 154, A162 (2007). 

  58. A. Guerfi, M. Dontigny, P. Charest, M. Petitclerc, M. Lagace, A. Vijh, and K. Zaghib. ‘Improved electrolytes for Li-ion batteries: Mixtures of ionic liquid and organic electrolyte with enhanced safety and electrochemical performance’ J. Power Sources, 195, 845 (2010). 

  59. A. Kanetomo, M. Egashira, N. Yoshimoto, and M. Morita, “Extended Abstracts of the 50th Battery Symposium”, 162, Kyoto, Japan (2009). 

  60. H. Nakagawa a, Y. Fujino, S. Kozono, Y. Katayama, T. Nukuda, H. Sakaebe, H. Matsumoto, and K. Tatsumi, ‘Application of nonflammable electrolyte with room temperature ionic liquids (RTILs) for lithium-ion cells’ J. Power Sources, 174, 1021 (2007). 

  61. S.-K. Jeong, M. Inaba, Y. Iriyama, T. Abe, and Z. Ogumi, ‘Electrochemical intercalation of lithium ion within graphite from propylene carbonate solutions’ Electrochemical and Solid-State Letters, 6, A13 (2003). 

  62. S.-K. Jeong, M. Inaba, Y. Iriyama, T. Abe and Z. Ogumi, ‘Interfacial reactions between graphite electrodes and propylene carbonate-based solutions: electrolyte-concentration dependence of electrochemical lithium intercalation reaction’ J. Power Sources, 175, 540 (2008) 

  63. S.-K. Jeong, H. Seo, D. Kim, H. Han, J. Kim, Y. Lee, Y. Iriyama, T, Abe, and Z, Ogumi, ‘Suppression of dendritic lithium formation by using concentrated electrolyte solutions’ Electrochemistry Communications, 10, 635 (2008). 

  64. A. N. Dey and B. P. Sullivan, ‘The electrochemical decomposition of propylene carbonate on graphite’ J. Electrochem. Soc., 117, 222 (1970). 

  65. J. O. Besenhard and H. P. Fritz, ‘Cathodic reduction of graphite in organic solutions of alkali and $NR^{4+}$ salts’ J. Electroanal. Chem., 53, 329 (1974). 

  66. G. Eichinger, ‘Cathodic decomposition reactions of propylene carbonate’ J. Electroanal. Chem., 74, 183 (1976). 

  67. M. Arakawa and J. Yamaki, ‘The cathodic decomposition of propylene carbonate in lithium batteries’ J. Electroanal. Chem., 219, 273 (1987). 

  68. M. Inaba, H. Tomiyasu, A. Tasaka, S.-K. Jeong, Y. Iriyama, T. Abe, and Z. Ogumi, ‘Surface film formation on graphite negative electrode at elevated temperatures’ Electrochemistry, 71, 1132 (2003). 

  69. M. Inaba, H. Tomiyasu, A. Tasaka, S.-K. Jeong, and Z. Ogumi, ‘Atomic force microscopy study on the stability of a surface film formed on a graphite negative electrode at elevated temperatures’ Langmuir, 20, 1348 (2004). 

  70. M. Suga, Y. Konyuba, S. Iwamatsu, Y. Watanabe, J. Osuga, H. Nishiyama, T. Ogura, and C. Sato, “Extended Abstracts of the 50th Battery Symposium”, 265, Kyoto, Japan (2009). 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로