$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

광물 합성 공정의 관점에서 본 생광물화과정 및 생체모방공학
Biomineralization and Biomimetics from the Point of Mineral Processing 원문보기

한국패류학회지 = The Korean journal of malacology, v.26 no.1, 2010년, pp.1 - 18  

이승우 (지구환경연구본부 CO2 처분연구실, 한국지질자원연구원) ,  장영남 (지구환경연구본부 CO2 처분연구실, 한국지질자원연구원) ,  박승빈 (생명화학공학과, KAIST)

초록
AI-Helper 아이콘AI-Helper

자연에 존재하는 생명체들은 유기-무기 성분들이 포함된 미세구조로 이루어진 계층학적으로 복잡한유-무기 나노 복합재를 합성한다. 자연에서 진행되는 유기-무기 나노복합재의 생성 및 재생 과정은 생광물화과정으로서 생물학적 환경에서 진행되는 생광물화과정의 연구는 신물질 합성에 대한 단서를 제공할 뿐만 아니라 산업적으로 중요한공정의 개발에 있어 귀중한 지침으로 활용될 수 있다. 연체동물 역시 생광물화과정을 수행하는 다른 생명체들과 마찬가지로 단백질과 다당류로 이루이진 유기매트릭스와 무기물의 상호작용을 통하여 패각을 설계하고 합성한다. 본 고찰에서는 이매패류의 패각 형성 과정 연구를 기반으로 아울러 생광물화과정 연구를 기반으로 한 소재합성과 관련된 생체모방공학 기술을 고찰하였다.

Abstract AI-Helper 아이콘AI-Helper

Biological organisms produce organic-inorganic nanocomposite composites that are hierarchically organized in composition and microstructure, containing both inorganic and organic components in complicated mixtures. The process related to the generation and regeneration of organic-inorganic complex i...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
탄산칼슘은 결정구조에 따라 어떻게 구분되는가? 이들 생체재료들 중에서 탄산칼슘은 다양한 지역에 분포되어 있는 특성과 수 많은 생물종의 외골격을 구성하는 물질로서 결정구조에 따라 크게 네 가지 형태의 다형성 (polymorphism) 을 가지고 있다. 열역학적으로 안정한 형태인 방해석 (calcite) 와 진주 등의 구성물질인 아라고나이트 (aragonite) 및 열역학적으로 불안정한 상으로서 자연에서는 흔히 볼 수 없는 형태인 바테라이트 (vaterite) 와 무정형 탄산칼슘 (amorphous CaCO3) 로 구분된다 (Weiner and Dove, 2003). 이와 같은 탄산칼슘은 대부분 외부 포식자의 공격으로부터 생체조직을 보호하는 기능을 갖는 이매패류 및 연체동물의 패각을 구성하는 물질로서 활용되고 있다.
생체재료의 기능은? 생광물화과정을 통해 합성되는 무기물질 구조체를 생체재료 (biomaterial) 라 하는데 (Simkiss and Wilbur, 1989) 대표적인 생체재료는 포유동물의 뼈와 치아 그리고 연체동물의 패각 등이다. 이들 생체재료의 기능은 뼈와 같은 생명체의 지지체 역할을 담당하는 재료 (Fratzl, 2004) 와 패류와 같이 외부 환경으로부터 생체조직을 보호하는 보호체 역할 수행하는 재료 (Sarikaya and Aksay, 1992) 그리고 ferritin과 같은 이온저장소 (Mann, 1995), bacterial magnetite와 같은 센서 역할을 수행하는 재료 (Frankel et al., 1979; Blakemore, 1986) 와 인간을 포함한 동물의 치아와 같은 분쇄 역할 (Boyde, 1971) 을 수행하는 특성을 가지고 있다. 이와 같이 생명체에서 합성할 수 있는 생체재료는 매우 다양한데 128,000 종의 연체동물과 80여 종의 산호와 500 여종의 유리 해면체를 포함한 5,000 여종의 해면류, 700 여종의 석회질을 합성하는 해조류와 심해 유공층류 (캄브리아기부터 현재까지 생존하는 석회질 각을 분비하는 원생생물) 등이 생체조직 내외에 생체재료를 합성하는 생명체 들이다 (Ehrlich et al.
생체재료란? 생광물화과정을 통해 합성되는 무기물질 구조체를 생체재료 (biomaterial) 라 하는데 (Simkiss and Wilbur, 1989) 대표적인 생체재료는 포유동물의 뼈와 치아 그리고 연체동물의 패각 등이다. 이들 생체재료의 기능은 뼈와 같은 생명체의 지지체 역할을 담당하는 재료 (Fratzl, 2004) 와 패류와 같이 외부 환경으로부터 생체조직을 보호하는 보호체 역할 수행하는 재료 (Sarikaya and Aksay, 1992) 그리고 ferritin과 같은 이온저장소 (Mann, 1995), bacterial magnetite와 같은 센서 역할을 수행하는 재료 (Frankel et al.
질의응답 정보가 도움이 되었나요?

참고문헌 (108)

  1. http://en.wikipedia.org/wiki/Aragonite 

  2. http://en.wikipedia.org/wiki/Calcite 

  3. http://en.wikipedia.org/wiki/Calcium_carbonate 

  4. 홍정기, 문희성. (2009) 미래의 유망소재. LG Business Insight, 25: 2-19. 

  5. Addadi, L., and Weiner, S. (1985) Interactions between acidic proteins and crystals: stereochemical requirements in biomineralization. Proc. Natl. Acad. Sci. USA, 82: 4110-4114. 

  6. Aizenberg, J., Muller, D.A., Grazul, J.L., and Hamann, D.R. (2003) Direct fabrication of large micropatterned single crystals. Science, 299: 1205-1208. 

  7. Aoki, H. (1991) Science and medical application of hydroxyapatite. Japan Association of Apatite Science. Tokyo 

  8. Belcher, A.M., Wu, X.H., Christensen, R.J., Hansma, P.K., Stucky, G.D., and Morse, D.E. (1996) Control of crystal phase switching and orientation by soluble mollusc-shell proteins. Nature, 381: 56-58. 

  9. Bischoff, J. (1968) Kinetics of calcite nucleation: Magnesium ion inhibition and ionic-strength catalysis. J. Geophys. Res., 73: 3315-3322. 

  10. Blakemore, R.P. (1986) Magnetotactic bacteria. CRC Critical Rev. in Biochem., 20: 365-380. 

  11. Bond, G.M., Stringer, J., Brandvold, D.K., Simsek, F.A., Medina, M.-G., and Egeland, G. (2001) Development of Integrated System for Biomimetic $CO_2$ Sequestration Using the Enzyme Carbonic Anhydrase. Energy & Fuels, 15: 309-316. 

  12. Boyde, A. (1971) Comparative Histology of Mammalian Teeth. In: Dahlberg AA (ed) Dental Morphology and Evolution. Chicago University Press, Chicago, pp 81-94 

  13. Busenberg, E., and Plummer, L.N. (1986) A comparison study of the dissolution and crystal growth kinetics of calcite and aragonite. USGS Bull, 1578: 139-168. 

  14. Checa, A. (2000) A new model for periostracum and shell formation in Unionidae (Bivalvia, Mollusca). Tissue Cell, 32: 405-416. 

  15. Checa, A.G. (2005) Rodriguez-Navarro AB and Esteban-Delgado FJ, The nature and formation of calcitic columnar prismatic shell layers in periomorphian bivalves. Biomaterials, 26: 6404-6414. 

  16. Chegwidden, W.R., Carter, N.D., and Edwards, Y.H. (2000) The carbonic anhydrase new horizons. Birkhauser Verglag. Basel, Switzerland. 

  17. Choi, C.S., and Kim, Y.W. (2000) A study of the correlation between organic matrices and nanocomposite materials in oyster shell formation. Biomaterials 21: 213-222. 

  18. Colfen, H., and Mann, S. (2003) Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. Angew Chem Int Ed Engl, 42: 2350-2365. 

  19. Colfen, H., and Antonietti, M. (2008) Mesocrystals and Nonclassical crystallization. John Wiley & Sons. 

  20. Cortie, M.B., McBean, K.E., and Elcombe, M.M. (2006) Fracture mechanics of mollusc shells. Physica B: Condensed Matter, 385-386: 545-547. 

  21. Dilmore, R., Griffith, C., Liu, Z., Soong, Y., Hedges, S.W., Koepsel, R., and Ataai, M. (2009) Carbonic anhydrase-facilitated $CO_2$ absorption with polyacrylamide buffering bead capture. International Journal of Greenhouse Gas Control, 3: 401-410. 

  22. Ehrlich, H., Koutsoukos, P.G., Demadis, K.D., and Pokrovsky, O.S. (2008) Principles of demineralization: Modern strategies for the isolation of organic frameworks: Part I. Common definitions and history. Micron, 39: 1062-1091. 

  23. Ehrlich, H., Koutsoukos, P.G., Demadis, K.D., and Pokrovsky, O.S. (2009) Principles of demineralization: Modern strategies for the isolation of organic frameworks: Part II. Decalcification. Micron, 40: 169-193. 

  24. Eichhorn, S.J., Scurr, D.J., Mummery, P.M., Golshan, M., Thompson, S.P., and Cernik, R.J. (2005) The role of residual stress in the fracture properties of a natural ceramic. J. Mater. Chem., 15: 947-952. 

  25. Fen, N., DeOliveira, D.B., Trumble, W.R., Sarkar, H.K., and Singh, B.R. (1994) Secondary Structure Estimation of Proteins Using the Amide III Region of Fourier Transform Infrared Spectroscopy: Application to Analyze Calcium-Binding-Induced Structural Changes in Calsequestrin. Appl. Spectrosc., 48: 1432-1441. 

  26. Frankel, R.B., Blakemore, R.P., and Wolfe, R.S. (1979) Magnetite in Freshwater Magnetotactic Bacteria. Science, 203: 1355-1356. 

  27. Fratzl, P. (2004) Hierarchical Structure and Mechnical Adaptation of Biological Materials. In: Reis RL, Weiner S (eds) Learning from Nature How to Design New Implantable Biomaterials: From Biomineralization Fundamentals to Biomimetic Materials and Processing Routes. Academic Publishers, Boston, pp 15-36 

  28. Geim, A.K., Dubonos, S.V., Grigorieva, I.V., Novoselov, K.S., Zhukov, A.A., and Shapoval, S.Y. (2003) Microfabricated adhesive mimicking gecko foot-hair. Nat Mater, 2: 461-463. 

  29. Goormaghtigh, E., Cabiaux, V., and Ruysschaert, J.M. (1990) Secondary structure and dosage of soluble and membrane proteins by attenuated total reflection Fourier-transform infrared spectroscopy on hydrated films. Eur J Biochem, 193: 409-420. 

  30. Gotliv, B.A., Kessler, N., Sumerel, J.L., Morse, D.E., Tuross, N., Addadi, L., and Weiner, S. (2005) Asprich: A novel aspartic acid-rich protein family from the prismatic shell matrix of the bivalve Atrina rigida. Chembiochem 6: 304-314. 

  31. Gregorie, C. (1972) Structure of the molluscan shell. In: Florkin M, Scheer BT (eds) Chemical Zoology Chemical Zoology, New York and London, pp 45-102 

  32. Gutknecht, J., Bisson, M.A., and Tosteson, F.C. (1977) Diffusion of carbon dioxide through lipid bilayer membrane. J. Gen. Physiol., 69: 779-794. 

  33. Han, X., Zhang, D., Li, X., and Li, Y. (2008) Bio-replicated forming of the biomimetic drag-reducing surfaces in large area based on shark skin. Chinese Science Bulletin, 53: 1587-1592. 

  34. Hare, P.E. (1963) Amino acids in the proteins from aragonite and calcite in the shells of Mytilus californianus. Science, 139: 216-217. 

  35. Haris, P.I., and Chapman, D. (1994) Analysis of polypeptide and protein structures using Fourier transform infrared spectroscopy. Methods Mol. Biol., 22: 183-202. 

  36. Harkness, J.M. (2002) A lifetime of connections-Otto Herbert Schmitt, 1913-1998. Phys. Perspect., 4: 456-490. 

  37. Hou, W.T., and Feng, Q.L. (2003) Crystal orientation preference and formation mechanism of nacreous layer in mussel. J. Cryst. Grow., 258: 402-408. 

  38. Jeronimidis, G. (2009) Biomimetics. In: Hornyak GL, Tibbals HF, Dutta J, Moore JJ (eds) Introduction to Nanoscience & Nanotechnology CRC Press, pp 1322-1403 

  39. Jin-Ming, W., Hayakawa, S., Tsuru, K., and Osaka, A. (2004) Low-Temperature Preparation of Anatase and Rutile Layers on Titanium Substrates and Their Ability To Induce in Vitro Apatite Deposition. Journal of the American Ceramic Society, 87: 1635-1642. 

  40. Kamat, S., Su, X., Ballarini, R., and Heuer, A.H. (2000) Structural basis for the fracture toughness of the shell of the conch Strombus gigas. Nature, 405: 1036-1040. 

  41. Kamino, K. (2008) Underwater adhesive of marine organisms as the vital link between biological science and material science. Mar Biotechnol (NY), 10: 111-121. 

  42. Kaplan, D.L. (1998) Mollusc shell structures: novel design strategies for synthetic materials. Biomaterials, 3: 232-236. 

  43. Kauppinen, J.K., Moffatt, D.J., Mantsch, H.H., and Cameron, D.G. (1981) Fourier self-deconvolution: a method for resoliving intrinsical overlapped bands. Appl. Spectrosc., 35: 271. 

  44. Kitamura, M., Konno, H., Yasui, A., and Masuoka, H. (2002) Controlling factors and mechanism of reactive crystallization of calcium carbonate polymorphs from calcium hydroxide suspensions. J. Cryst. Growth, 236: 323-332. 

  45. Kono, M., Hayashi, N., and Samata, T. (2000) Molecular mechanism of the nacreous layer formation in Pinctada maxima. Biochem Biophys Res Commun, 269: 213-218. 

  46. Landi, E., Celotti, G., Logroscino, G., and Tamieri, A. (2003) Carbonated hydroxyapatite as bone substitute. J. Eur. Ceram. Soc., 23: 2931-2937. 

  47. Lee, H., Scherer, N.F., and Messersmith, P.B. (2006) Single-molecule mechanics of mussel adhesion. Proc Natl Acad Sci USA, 103: 12999-13003. 

  48. Lee, J.Y., Buxton, G.A., and Balazs, A.C. (2004) Using nanoparticles to create self-healing composites. J. Chem. Phys., 121: 5531-5540. 

  49. Lee, K.B., Lee, S.W., and Park, S.B. (2009) Growth of single-crystalline sodium titanate and sodium tungstate one-dimensional nanostructures: Bio-inspired approach using oyster shell. Journal of Crystal Growth, 311: 4365-4370. 

  50. Lee, S.W., and Choi, C.S. (2007) The correlation between organic matrices and biominerals (myostracal prism and folia) of the adult oyster shell, Crassostrea gigas. Micron, 38: 58-64. 

  51. Lee, S.W., and Choi, C.S. (2007) High-Rate Growth of Calcium Carbonate Crystal Using Soluble Protein from Diseased Oyster Shell. Crystal Growth & Design, 7: 1463-1468. 

  52. Lee, S.W., Gang, G., Lee, K.B., and Park, S.B. (2009) On synthesis of new-typed $SiO_2$ thin film using biomaterials. Micron, 40: 713-718. 

  53. Lee, S.W., Hong, S.M., and Choi, C.S. (2006) Characteristics of calcification processes in embryos and larvae of the pacific oyster, Crassostrea gigas. Bull. Mar. Sci., 78: 309-317. 

  54. Lee, S.W., Kim, G.H., and Choi, C.S. (2008) Characteristic crystal orientation of folia in oyster shell, Crassostrea gigas. Materials Science and Engineering: C, 28: 258-263. 

  55. Lee, S.W., Kim, Y.M., Choi, H.S., Yang, J.M., and Choi, C.S. (2006) Primary structure of myostracal prism soluble protein (MPSP) in oyster shell, Crassostrea gigas. Protein J, 25: 288-294. 

  56. Lee, S.W., Kim, Y.M., Kim, R.H., and Choi, C.S. (2008) Nano-structured biogenic calcite: a thermal and chemical approach to folia in oyster shell. Micron, 39: 380-386. 

  57. Lee, S.W., Lee, K.B., and Park, S.B. (2009) A new approach to the synthesis of functional thin films: hierarchical synthesis of $CaCO_3$ thin films and their transformation into patterned metal thin films. Micron, 40: 737-742. 

  58. Lee, S.W., Park, S.B., and Choi, C.S. (2008) On self-organized shell formation by bovine carbonic anhydrase II, and soluble protein extracted from regenerated shell. Micron, 39: 1228-1234. 

  59. Liao, S., Ngiam, M., Watari, F., Ramakrishna, S., and Chan, C.K. (2007) Systematic fabrication of nano-carbonated hydroxyapatite/collagen composites for biomimetic bone grafts. Bioinspir Biomim, 2: 37-41. 

  60. Lin, A., and Meyers, M.A. (2005) Growth and structure in abalone shell. Materials Science and Engineering A, 390: 27-41. 

  61. Lowenstam, H.A., and Weiner, S. (1989) On Biomineralization pp. 103-110. Oxford University Press. New York 

  62. Mann, K., Weiss, I.M., Andre, S., Gabius, H.J., and Fritz, M. (2000) The amino-acid sequence of the abalone (Haliotis laevigata) nacre protein perlucin. Detection of a functional C-type lectin domain with galactose/mannose specificity. Eur J Biochem, 267: 5257-5264. 

  63. Mann, S. (1995) Biomineralization, the inorganic-organic interface, and crystal engineering. In: Sarikaya M, Aksay IA (eds) Biomimetics design and processing of materials. American Institute of Physics, AIP Press., pp 91-116 

  64. Mann, S. (2001) Biomineralization principles and concepts in bioinorganic materials chemistry. Oxford University Press. New York 

  65. Marin, F., Corstjens, P., de Gaulejac, B., de Vrind-De Jong, E., and Westbroek, P. (2000) Mucins and molluscan calcification. Molecular characterization of mucoperlin, a novel mucin-like protein from the nacreous shell layer of the fan mussel Pinna nobilis (Bivalvia, pteriomorphia). J Biol Chem, 275: 20667-20675. 

  66. Marin, F., and Luquet, G. (2004) Molluscan shell proteins. Comptes Rendus Palevol, 3: 469-492. 

  67. Marxen, J.C., Nimtz, M., Becker, W., and Mann, K. (2003) The major soluble 19.6 kDa protein of the organic shell matrix of the freshwater snail Biomphalaria glabrata is an N-glycosylated dermatopontin. Biochim Biophys Acta 1650: 92-98. 

  68. Medakovic, D. (2000) Carbonic anhydrase activity and biomineralization process in embryos, larvae and adult blue mussels Mytilus edulis L. Helgoland Marine Research, 54: 1-6. 

  69. Medakovic, D., Popovic, S., Grzeta, B., Plazonic, M., and Hrs-Brenko, M. (1997) X-ray diffraction study of calcification processes in embryos and larvae of the brooding oyster Ostrea edulis. Marine Biology, 129: 615-623. 

  70. Meldrum, N.U., and Roughton, F.J. (1933) Carbonic anhydrase. Its preparation and properties. J Physiol, 80: 113-142. 

  71. Michenfelder, M., Fu, G., Lawrence, C., Weaver, J.C., Wustman, B.A., Taranto, L., Evans, J.S., and Morse, D.E. (2003) Characterization of two molluscan crystal-modulating biomineralization proteins and identification of putative mineral binding domains. Biopolymers, 70: 522-533. 

  72. Mirjafari, P., Asghari, K., and Mahinpey, N. (2007) Investigating the Application of Enzyme Carbonic Anhydrase for $CO_2$ Sequestration Purposes. Industrial & Engineering Chemistry Research, 46: 921-926. 

  73. Miyamoto, H., Miyashita, T., Okushima, M., Nakano, S., Morita, T., and Matsushiro, A. (1996) A carbonic anhydrase from the nacreous layer in oyster pearls. Proc. Natl. Acad. Sci. USA, 93: 9657-9660. 

  74. Miyamoto, H., Yano, M., and Miyashita, T. (2003) Similarities in the structure of nacrein, the shell-matrix protein, in a bivalve and a gastropod. J. Mollus. Stud. 69: 87-89. 

  75. Miyashita, T., Takagi, R., Okushima, M., Nakano, S., Miyamoto, H., Nishikawa, E., and Matsushiro, A. (2000) Complementary DNA Cloning and Characterization of Pearlin, a New Class of Matrix Protein in the Nacreous Layer of Oyster Pearls. Mar Biotechnol (NY), 2: 409-418. 

  76. Mount, A.S., Wheeler, A.P., Paradkar, R.P., and Snider, D. (2004) Hemocyte-mediated shell mineralization in the eastern oyster. Science 304: 297-300. 

  77. Nancollas, G.H., and Sawada, K. (1982) Formation of Scales of Calcium Carbonate Polymorphs: The Influence of Magnesium Ion and Inhibitors. Journal of Petroleum Technology, 34: 645-652. 

  78. Newell-Roger, I.E., and Langdon, C.J. (1996) The Eastern Oyster. In: Kennedy VS, Newell-Roger IE, Eble AE (eds) Crassostrea virginica. Maryland Sea Grant College, College Park. , pp 185-229 

  79. Odum, H.T. (1957) Biogeochemical Deposition of Strontium. Inst. Mar. Sci., 4: 38-114. 

  80. Park, R.J., and Meldrum, F.C. (2002) Synthesis of single crystals of calcite with complex morphologies. Adv. Mater., 14: 1167-1169. 

  81. Park, W.K., Ko, S.-J., Lee, S.W., Cho, K.-H., Ahn, J.-W., and Han, C. (2008) Effects of magnesium chloride and organic additives on the synthesis of aragonite precipitated calcium carbonate. Journal of Crystal Growth, 310: 2593-2601. 

  82. Pokroy, B., Quintana, J.P., Caspi, E.N., Berner, A., and Zolotoyabko, E. (2004) Anisotropic lattice distortions in biogenic aragonite. Nat Mater, 3: 900-902. 

  83. Politi, Y., Arad, T., Klein, E., Weiner, S., and Addadi, L. (2004) Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase. Science, 306: 1161-1164. 

  84. Samata, T., Hayashi, N., Kono, M., Hasegawa, K., Horita, C., and Akera, S. (1999) A new matrix protein family related to the nacreous layer formation of Pinctada fucata. FEBS Lett, 462: 225-229. 

  85. Sarashina, I., and Endo, K. (1998) Primary structure of a soluble matrix protein of scallop shell; implications for calcium carbonate biomineralization. American Mineralogist, 83: 1510-1515. 

  86. Sarashina, I., and Endo, K. (2001) The complete primary structure of molluscan shell protein 1 (MSP-1), an acidic glycoprotein in the shell matrix of the scallop Patinopecten yessoensis. Mar Biotechnol (NY), 3: 362-369. 

  87. Sarikaya, M., and Aksay, I.A. (1992) Nacre of Abalone Shell: a Natural Multifunctional Nanolaminated Ceramic-Polymer Composite Material. . In: C. S (ed) Results and Problems in Cell Differentiation in Biopolymers. Springer and Verlag, Amsterdam, pp 1-25 

  88. Schanek, W.J., and Yoshimura, M. (1998) Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J. Mater. Res., 13: 94-117. 

  89. Sethmann, I., and Worheide, G. (2008) Structure and composition of calcareous sponge spicules: a review and comparison to structurally related biominerals. Micron 39: 209-228. 

  90. Shen, X., Belcher, A.M., Hansma, P.K., Stucky, G.D., and Morse, D.E. (1997) Molecular cloning and characterization of lustrin A, a matrix protein from shell and pearl nacre of Haliotis rufescens. J Biol Chem 272: 32472-32481. 

  91. Shi, C., Dai, Y., Liu, Q., Xie, Y., and Xu, X. (2003) The FT-IR spectrometric analysis of the changes of polyphenol oxidase II secondary structure. Journal of Molecular Structure 644: 139-144. 

  92. Simkiss, K., and Wilbur, K.M. (1989) Biomineralizationcell biology and mineral deposition. New York 

  93. Stenzel, H.B. (1964) Oysters: Composition of the Larval Shell. Science, 145: 155-156. 

  94. Stone, H. (1962) The values of the parameters of the component bands, obtained as the result of the deconvolution. J. Opt. Soc. Am., 52: 998-1003. 

  95. Sudo, S., Fujikawa, T., Nagakura, T., Ohkubo, T., Sakaguchi, K., Tanaka, M., Nakashima, K., and Takahashi, T. (1997) Structures of mollusc shell framework proteins. Nature, 387: 563-564. 

  96. Tegethoff , F.W. (2001) Calcium carbonate from the Cretaceous Period into the 21st century. Birkhauser Verlag. Berlin 

  97. Trask, R.S., Williams, H.R., and Bond, I.P. (2007) Self-healing polymer composites: mimicking nature to enhance performance. Bioinspir Biomim, 2: P1-9. 

  98. Tsukamoto, D., Sarashina, I., and Endo, K. (2004) Structure and expression of an unusually acidic matrix protein of pearl oyster shells. Biochem Biophys Res Commun, 320: 1175-1180. 

  99. Vincent, J.F., Bogatyreva, O.A., Bogatyrev, N.R., Bowyer, A., and Pahl, A.K. (2006) Biomimetics: its practice and theory. J R Soc Interface, 3: 471-482. 

  100. Wang, R.Z., Addadi, L., and Weiner, S. (1997) Design strategies of sea urchin teeth: structure, composition and micromechanical relations to function. Philos Trans R Soc Lond B Biol Sci, 352: 469-480. 

  101. Weiner, S., and Dove, P.M. (2003) An Overview of Biomineralization Processes and the Problem of the Vital Effect. Reviews in Mineralogy and Geochemistry, 54: 1-29. 

  102. Weiner, S., and Traub, W. (1980) X-ray diffraction study of the insoluble organic matrix of mollusk shells. FEBS Lett., 111: 311-316. 

  103. Weiss, I.M., Gohring, W., Fritz, M., and Mann, K. (2001) Perlustrin, a Haliotis laevigata (Abalone) Nacre Protein, Is Homologous to the Insulin-like Growth Factor Binding Protein N-Terminal Module of Vertebrates. Biochemical and Biophysical Research Communications, 285: 244-249. 

  104. Weiss, I.M., Tuross, N., Addadi, L., and Weiner, S. (2002) Mollusc larval shell formation: amorphous calcium carbonate is a precursor phase for aragonite. Journal of Experimental Zoology, 293: 478-491. 

  105. Wilbur, K.M. (1972) Shell formation in mollusks. In: Florkin M, Scheer BT (eds) Chemical Zoology, Vol. VII. Academic Press, New York and London, pp 103-142 

  106. Wilt, F.H., and Killian, C.E. (2008) What genes and genomes tell us about calcium carbonate biomineralization. In: Sigel A, Sigel H, Sigel RKO (eds) Metal Ions in Life Sciences John Wiely & Sons, pp 37-69 

  107. Xiaodong, L., and Patrick, N. (2004) Micro/ nanomechanical characterization of a natural nanocomposite material-the shell of Pectinidae. Nanotechnology, 15: 211. 

  108. Zhang, Y., Xie, L., Meng, Q., Jiang, T., Pu, R., Chen, L., and Zhang, R. (2003) A novel matrix protein participating in the nacre framework formation of pearl oyster, Pinctada fucata. Comp Biochem Physiol B Biochem Mol Biol, 135: 565-573. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로