$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Abstract

This paper investigates the dispersion of carbon nanotube (CNT) in a polymer melt during iterative extrusion by measuring electrical and rheological properties. 2 wt% CNT as received was mixed with polymer (low density polyethylene) through twin screw extruder. The extrusion was iteratively performed at the same process condition. At the same time, the rheological and electrical properties were measured. We expected the mixing energy applied on entangled CNT increases with process time, which improves the CNT dispersion. The electrical property of intermediate composite was effectively improved by iterative extrusion. After the fifth extrusion, CNT/LDPE composite reached to the conductive electric level (surface resistance ${\leq}E+5\;{\Omega}/sq$). Also, the rheological properties of composite were increased according to CNT dispersion. Especially the rheological properties over lower frequency region were significantly increased by the dispersed nanotube. This paper suggests that the dispersion by only iterative mixing process results in a disentanglement of CNT and they forms an electrically useful structure. The rheological and electrical measurements indicate that the CNT disentangled by the iterative mixing method forms a percolation structure.

저자의 다른 논문

참고문헌 (20)

  1. Larson, R., 1999, The structure and rheology of complex fluids, Oxford University Press, New York. 
  2. Zhu, J., J. Kim, H. Peng, J. L. Margrave, V.N. Khabashesku, and E.V. Barrera, 2003, Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization, Nano Lett. 3, 1107-1113. 
  3. Chen, G.-X., H.-S. Kim, B. H. Park and J. S. Yoon, 2006, Multiwalled carbon nanotubes reinforced nylon 6 composites, Polymer 47, 4760-4767. 
  4. Lee, G.-W., S. Jagannathan, H. G. Chae, M. L. Minus, and S. Kumar, 2008, Carbon nanotube dispersion and exfoliation in polypropylene and structure and properties of the resulting composites, Polymer 49, 1831. 
  5. Qian, D., E.C. Dickey, R. Andrews, and T. Rantell, 2000, Load transfer and deformation mechanisms in carbon nanotubepolystyrene composites, Appl Phys Lett. 76, 2868. 
  6. Bauhofer, W. and J. Z. Kovacs, 2007, A review and analysis of electrical percolation in carbon nanotube polymer composites, Composites Science and Technology 69, 1486-1498. 
  7. Huang, Y. Y., S. V. Ahir, and E. M. Terentjev, 2006, Dispersion rheology of carbon nanotubes in a polymer matrix, Phys. Rev. B 73, 125422. 
  8. Funck, A. and W. Kaminsky, 2007, Polypropylene carbon nanotube composites by in situ polymerization, Composites Science and Technology 67, 906-915. 
  9. Li, Y. and H. Shimizu, 2007, High-shear processing induced homogenous dispersion of pristine multiwalled carbon nanotubes in a thermoplastic elastomer, Polymer 48, 2203-2207. 
  10. Kumar, S., T. D. Dang, F. E. Arnold, A. R. Bhattacharyya, B. G. Min, X. Zhang, R. A. Vaia, C. Park, W.W. Adams, R. H. Hauge, R. E. Smalley, S. Ramesh, and P. A. Willis, 2002, Synthesis, Structure, and Properties of PBO/SWNT Composites, Macromolecules 35,9039-9043(2002). 
  11. Peter J. F. Harris, 1999, Carbon nanotubes and related structures : new materials for the 21st century, Cambridge University Press. 
  12. Rastogi,R., R. Kaushal, S. K. Tripathi, A. L. Sharma, I. Kaur, and L. Bharadwaj, 2008, Comparative study of carbon nanotube dispersion using surfactants, J. Colloid Int. Sci. 328, 421-428. 
  13. Haggenmueller, R., F. Du, J. E. Fischer, and K. I. Winey, 2006, Interfacial in situ polymerization of single wall carbon nanotube/ nylon 6,6 nanocomposites, Polymer 47, 2381-2388. 
  14. Ji,Y., Y. Y. Huang, A.R. Tajbakhsh, and E. M. Terentjev, 2009, Polysiloxane surfactants for the dispersion of carbon nanotubes in nonpolar organic solvents, Langmuir 25(20), 12325. 
  15. Krause, B., P. Potschke, and L. Haubler, Influence of small scale melt mixing conditions on electrical resistivity of carbon nanotube- polyamide composites, Composites Science and Technology 69, 1505-1515. 
  16. Lau, K.-T. and D. Hui, 2002, The revolutionary creation of new advanced materials – Carbon nanotube composites, Composites Part B 33, 263-277. 
  17. Liu, J., T. Wang, T. Uchida, and S. Kumar, 2005, Carbon nanotube core-polymer shell nanofibers, J App. Poly. Sci. 96(5), 1992-1995. 
  18. Vigolo, B., P. Poulin, M. Lucas, P. Launois, and P. Bernier, 2002, Improved structure and properties of single-wall carbon nanotube spun fibers, Appl Phys Lett. 81, 1210. 
  19. Chen, G.-X., Y. Li and H. Shimizu, 2007, Ultrahigh-shear processing for the preparation of polymer/carbon nanotube composites, Carbon 45, 2334-2340. 
  20. Deng, J., X. Ding, W. Zhang, Y. Peng, J. Wang, X. Long, P. Li, and A. S. Chan, 2002, Carbon nanotube-polyaniline hybrid materials, Eur Polym J. 38, 2497. 

이 논문을 인용한 문헌 (2)

  1. 2012. "" Korea-Australia rheology journal, 24(3): 221~227 
  2. 2013. "" Korea-Australia rheology journal, 25(1): 1~8 

원문보기

원문 PDF 다운로드

  • 원문 PDF 정보가 존재하지 않습니다.

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일