최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Journal of microbiology and biotechnology, v.20 no.3, 2010년, pp.532 - 541
Isarankura-Na-Ayudhya, Chartchalerm (Department of Clinical Microbiology, Faculty of Medical Technology, Mahidol University) , Tansila, Natta (Department of Clinical Microbiology, Faculty of Medical Technology, Mahidol University) , Worachartcheewan, Apilak (Department of Clinical Microbiology, Faculty of Medical Technology, Mahidol University) , Bulow, Leif (Department of Pure and Applied Biochemistry, Center for Chemistry and Chemical Engineering, Lund University) , Prachayasittikul, Virapong (Department of Clinical Microbiology, Faculty of Medical Technology, Mahidol University)
Peroxidase-like activity of Vitreoscilla hemoglobin (VHb) has been recently disclosed. To maximize such activity, two catalytically conserved residues (histidine and arginine) found in the distal pocket of peroxidases have successfully been introduced into that of the VHb. A 15-fold increase in cata...
* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.
Adams, P. A. 1990. The peroxidasic activity of the haem octapeptide microperoxidase-8(MP-8): The kinetic mechanism of the catalytic reduction of $H_{2}O_{2}$ by MP-8 using 2,2-azinobis-(3-ethylbenzothiazoline-6-sulphonate) (ABTS) as reducing substrate. J. Chem. Soc. Perkin Trans. 2: 1407-1414.
Allocatelli, C. T., F. Cutruzzola, A. Brancaccio, M. Brunori, J. Qin, and G. N. La Mar. 1993. Structural and functional characterization of sperm whale myoglobin mutants: Role of arginine (E10) in ligand stabilization. Biochemistry 32: 6041-6049.
Andersson, C. I., C. Arfvidsson, P. T. Kallio, K. G. Wahlund, and L. Bulow. 2003. Enhanced ribosome and tRNA contents in Escherichia coli expressing a truncated Vitreoscilla hemoglobin mutant analyzed by flow field-flow fractionation. Biotechnol. Lett. 25: 1499-1504.
Arseguel, D. and M. Baboulne. 2004. Removal of phenol from coupling of talc and peroxidase: Application for depollution of waste water containing phenolic compounds. J. Chem. Technol. Biotechnol. 61: 331-335.
Ascenzi, P., M. Brunori, M. Coletta, and A. Desideri. 1989. pH effects on the haem iron co-ordination state in the nitric oxide and deoxy derivatives of ferrous horseradish peroxidase and cytochrome c peroxidase. Biochem. J. 258: 473-478.
Bauer, F. and H. Sticht. 2007. A proline to glycine mutation in the Lck SH3-domain affects conformational sampling and increases ligand binding affinity. FEBS Lett. 581: 1555-1560.
Beale, S. I. 1990. Biosynthesis of the tetrapyrrole pigment precursor, delta-aminolevulinic acid, from glutamate. Plant Physiol. 93: 1273-1279.
Berglund, G. I., G. H. Carlsson, A. T. Smith, H. Szoke, A. Henriksen, and J. Hajdu. 2002. The catalytic pathway of horseradish peroxidase at high resolution. Nature 417: 463-468.
Bodalo, A., J. L. Gomez, E. Gomez, A. M. Hidalgo, M. Gomez, and A. M. Yelo. 2007. Elimination of 4-chlorophenol by soybean peroxidase and hydrogen peroxide: Kinetic model and intrinsic parameters. Biochem. Eng. J. 34: 242-247.
Bolognesi, M., A. Boffi, M. Coletta, A. Mozzarelli, A. Pesce, C. Tarricone, and P. Ascenzi. 1999. Anticooperative ligand binding properties of recombinant ferric Vitreoscilla homodimeric hemoglobin: A thermodynamic, kinetic and X-ray crystallographic study. J. Mol. Biol. 291: 637-650.
Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
Delano, W. L. 1998. The PyMOL Molecular Graphic System. Delano Scientific LLC, San Carlos, CA (http://www.pymol.org).
Dubrac, S. and D. Touati. 2002. Fur-mediated transcriptional and post-transcriptional regulation of FeSOD expression in Escherichia coli. Microbiology 148: 147-156.
Fan, C., J. Zhong, R. Guan, and G. Li. 2003. Direct electrochemical characterization of Vitreoscilla sp. hemoglobin entrapped in organic films. Biochim. Biophys. Acta 1649: 123-126.
Farres, J. and P. T. Kallio. 2002. Improved cell growth in tobacco suspension cultures expressing Vitreoscilla hemoglobin. Biotechnol. Prog. 18: 229-233.
Fee, J. A. 1991. Regulation of sod genes in Escherichia coli: Relevance to superoxide dismutase function. Mol. Microbiol. 5: 2599-2610.
Finzel, B. C., T. L. Poulos, and J. Kraut. 1984. Crystal structure of yeast cytochrome c peroxidase refined at 1.7-A resolution. J. Biol. Chem. 259: 13027-13036.
Frey, A. D., B. T. Oberle, J. Farres, and P. T. Kallio. 2004. Expression of Vitreoscilla haemoglobin in tobacco cell cultures relieves nitrosative stress in vivo and protects from NO in vitro. Plant Biotechnol. J. 2: 221-231.
Geckil, H., S. Gencer, H. Kahraman, and S. O. Erenler. 2003. Genetic engineering of Enterobacter aerogenes with the Vitreoscilla hemoglobin gene: Cell growth, survival, and antioxidant enzyme status under oxidative stress. Res. Microbiol. 154: 425-431.
George, P. 1953. The chemical nature of the second hydrogen peroxide compound formed by cytochrome c peroxidase and horseradish peroxidase. I. Titration with reducing agents. Biochem. J. 54: 267-276.
Isarankura-Na-Ayudhya, C., P. Panpumthong, T. Tangkosakul, S. Boonpangrak, and V. Prachayasittikul. 2008. Shedding light on the role of Vitreoscilla hemoglobin on cellular catabolic regulation by proteomic analysis. Int. J. Biol. Sci. 4: 71-80.
Kaur, R., R. Pathania, V. Sharma, S. C. Mande, and K. L. Dikshit. 2002. Chimeric Vitreoscilla hemoglobin (VHb) carrying a flavoreductase domain relieves nitrosative stress in Escherichia coli: New insight into the functional role of VHb. Appl. Environ. Microbiol. 68: 152-160.
Khosla, C. and J. E. Bailey. 1988. Heterologous expression of a bacterial haemoglobin improves the growth properties of recombinant Escherichia coli. Nature 331: 633-635.
Khosla, C., J. E. Curtis, J. DeModena, U. Rinas, and J. E. Bailey. 1990. Expression of intracellular hemoglobin improves protein synthesis in oxygen-limited Escherichia coli. Biotechnology (NY) 8: 849-853.
Kvist, M., E. S. Ryabova, E. Nordlander, and L. Bulow. 2007. An investigation of the peroxidase activity of Vitreoscilla hemoglobin. J. Biol. Inorg. Chem. 12: 324-334.
Ling, K. Q. and L. M. Sayre. 2005. Horseradish peroxidasemediated aerobic and anaerobic oxidations of 3-alkylindoles. Bioorg. Med. Chem. 13: 3543-3551.
Liu, C. Y. and D. A. Webster. 1974. Spectral characteristics and interconversions of the reduced oxidized and oxygenated forms of purified cytochrome o. J. Biol. Chem. 249: 4261-4266.
Matsui, T., S. Ozaki, E. Liong, G. N. Phillips Jr., and Y. Watanabe. 1999. Effects of the location of distal histidine in the reaction of myoglobin with hydrogen peroxide. J. Biol. Chem. 274: 2838-2844.
Miessler, G. L. and D. A. Tarr. 2004. Inorganic Chemistry, 3rd Ed. Prentice Hall, Upper Saddle River, New Jersey.
Nagababu, E., F. J. Chrest, and J. M. Rifkind. 2003. Hydrogenperoxide-induced heme degradation in red blood cells: The protective roles of catalase and glutathione peroxidase. Biochim. Biophys. Acta 1620: 211-217.
Nagababu, E. and J. M. Rifkind. 2000. Heme degradation during autoxidation of oxyhemoglobin. Biochem. Biophys. Res. Commun. 273: 839-845.
Nagababu, E. and J. M. Rifkind. 2000. Reaction of hydrogen peroxide with ferrylhemoglobin: Superoxide production and heme degradation. Biochemistry 39: 12503-12511.
Patapas, J., M. M. Al-Ansari, K. E. Taylor, J. K. Bewtra, and N. Biswas. 2007. Removal of dinitrotoluenes from water via reduction with iron and peroxidase-catalyzed oxidative polymerization: A comparison between Arthromyces ramosus peroxidase and soybean peroxidase. Chemosphere 67: 1485-1491.
Redaelli, C., E. Monzani, L. Santagostini, L. Casella, A. M. Sanangelantoni, R. Pierattelli, and L. Banci. 2002. Characterization and peroxidase activity of a myoglobin mutant containing a distal arginine. Chembiochem 3: 226-233.
Rodriguez-Lopez, J. N., A. T. Smith, and R. N. Thorneley. 1996. Role of arginine 38 in horseradish peroxidase. A critical residue for substrate binding and catalysis. J. Biol. Chem. 271: 4023-4030.
Roos, V., C. I. Andersson, C. Arfvidsson, K. G. Wahlund, and L. Bulow. 2002. Expression of double Vitreoscilla hemoglobin enhances growth and alters ribosome and tRNA levels in Escherichia coli. Biotechnol. Prog. 18: 652-656.
Schiodt, C. B., N. C. Veitch, and K. G. Welinder. 2007. Roles of distal arginine in activity and stability of Coprinus cinereus peroxidase elucidated by kinetic and NMR analysis of the Arg51Gln, -Asn, -Leu, and -Lys mutants. J. Inorg. Biochem. 101: 336-347.
Suwanwong, Y., M. Kvist, C. Isarankura-Na-Ayudhya, N. Tansila, L. Bulow, and V. Prachayasittikul. 2006. Chimeric antibodybinding Vitreoscilla hemoglobin (VHb) mediates redox-catalysis reaction: New insight into the functional role of VHb. Int. J. Biol. Sci. 2: 208-215.
Suzuki, T., Y. H. Watanabe, M. Nagasawa, A. Matsuoka, and K. Shikama. 2000. Dual nature of the distal histidine residue in the autoxidation reaction of myoglobin and hemoglobin comparison of the H64 mutants. Eur. J. Biochem. 267: 6166-6174.
Tarricone, C., A. Galizzi, A. Coda, P. Ascenzi, and M. Bolognesi. 1997. Unusual structure of the oxygen-binding site in the dimeric bacterial hemoglobin from Vitreoscilla sp. Structure 5: 497-507.
Tsuruga, M., A. Matsuoka, A. Hachimori, Y. Sugawara, and K. Shikama. 1998. The molecular mechanism of autoxidation for human oxyhemoglobin. Tilting of the distal histidine causes nonequivalent oxidation in the beta chain. J. Biol. Chem. 273: 8607-8615.
Veitch, N. C. 2004. Horseradish peroxidase: A modern view of a classic enzyme. Phytochemistry 65: 249-259.
Verma, S., S. Patel, R. Kaur, Y. T. Chung, B. T. Duk, K. L. Dikshit, B. C. Stark, and D. A. Webster. 2005. Mutational study of the bacterial hemoglobin distal heme pocket. Biochem. Biophys. Res. Commun. 326: 290-297.
Wakabayashi, S., H. Matsubara, and D. A. Webster. 1986. Primary sequence of a dimeric bacterial haemoglobin from Vitreoscilla. Nature 322: 481-483.
Wei, X. X. and G. Q. Chen. 2008. Applications of the VHb gene vgb for improved microbial fermentation processes. Methods Enzymol. 436: 273-287.
Winterbourn, C. C. 1985. Free-radical production and oxidative reactions of hemoglobin. Environ. Health Perspect. 64: 321-330.
Yang, G., R. Yuan, and Y. Q. Chai. 2008. A high-sensitive amperometric hydrogen peroxide biosensor based on the immobilization of hemoglobin on gold colloid/L-cysteine/gold colloid/nanoparticles Pt-chitosan composite film-modified platinum disk electrode. Colloids Surf. B Biointerfaces 61: 93-100.
Zhang, J. and M. Oyama. 2004. A hydrogen peroxide sensor based on the peroxidase activity of hemoglobin immobilized on gold nanoparticles-modified ITO electrode. Electrochim. Acta 50: 85-90.
Zhang, K., L. Mao, and R. Cai. 2000. Stopped-flow spectrophotometric determination of hydrogen peroxide with hemoglobin as catalyst. Talanta 51: 179-186.
Zhang, L., Y. Li, Z. Wang, Y. Xia, W. Chen, and K. Tang. 2007. Recent developments and future prospects of Vitreoscilla hemoglobin application in metabolic engineering. Biotechnol. Adv. 25: 123-136.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.