$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Abstract

In this study, a new thin films passivation technique using Zn with high electronegativity and $MgF_2$, a fluorine material with better optical transmittance than the sealing film materials that have thus far been reported was proposed. Targets with various ratios of $MgF_2$ to Zn (5:5, 4:6 and 3:7) were fabricated to control the amount of Zn in the passivation films. The Mg-Zn-F films were deposited onto the substrates and Zn was located in the gap between the lattices of $MgF_2$ without chemical metathesis in the Mg-Zn-F films. The thickness and optical transmittance of the deposited passivation films were approximately 200 nm and 80%, respectively. It was confirmed via electron dispersive spectroscopy (EDS) analysis that the Zn content of the film that was sputtered using a 4:6 ratio target was 9.84 wt%. The Zn contents of the films made from the 5:5 and 3:7 ratio targets were 2.07 and 5.01 wt%, respectively. The water vapor transmission rate (WVTR) was determined to be $38^{\circ}C$, RH 90-100%. The WVTR of the Mg-Zn-F film that was deposited with a 4:6 ratio target nearly reached the limit of the equipment, $1\times10^{-3}\;gm^2{\cdot}day$. As the Zn portion increased, the packing density also increased, and it was found that the passivation films effectively prevented the permeation by either oxygen or water vapor. To measure the characteristics of gas barrier, the film was applied to the emitting device to evaluate their lifetime. The lifetime of the applied device with passivation was increased to 25 times that of the PLED device, which was non-passivated.

참고문헌 (10)

  1. J. R. Sheats, H. Antoniadis, M. Hueschen, W. Leonard, J. Miller,R. Moon, D. Roitman and A. Stocking, Science 273, 884 (1996). 
  2. J. Lee, J. I. Lee, J. Lee, J. Y. Lee, D. M. Kang, W. Yuan, S. K. Kwon, and H. Y. Che, J. Information Display 10, 92 (2009). 
  3. V. Tsakova, S. Winkels, and J. W. Schultze, Electrochimica Acta 46, 759 (2000). 
  4. H. J. Cho and C. K. Hwangbo, Appl. Opt. 35, 5545 (1996). 
  5. D. E. Kim, B. H. Kang, S. H. Kim, S. M. Hong, S. Y. Lee, B. W. Shin, H. R. Lee, D. H. Kwon and S. W. Kang, J. Korean Phys. Soc. 54, 231 (2009). 
  6. Y. M. Kim, J. W. Lee, J. H. Jung, K. K. Paek, M. Y. Sung, J. K. Kim and B. K. Ju, IEEE Electron Device Lett. 27, 558 (2006). 
  7. G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri, and A. J. Heeger, Nature 357, 477 (1992). 
  8. L. M. Do, E. Han, Y. Niidome, M. Fujihira, T. Kanno, S. Yoshida, A. Maeda and A. J. Ikushima, J. Appl. Phys. 76, 5118 (1994). 
  9. H. Tang, L. Zhu, Y. Harima, and K. Yamashita, Synt. Mater. 110, 105 (2000). 
  10. M. S. Weaver, L. A. Michalski, K. Rajan, M. A. Rothman, J. A. Silvernail, J. J. Brown, P. E. Burrows, G. L. Graff, M. E. Gross, P. M. Martin, M. Hall, E. Mast, C. Bonham, W. Bennett and M. Zumhoff, Appl. Phys. Lett. 81, 2929 (2002). 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일