$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

목질바이오매스의 효소 당화 기술에 관한 연구 동향
A Research Trend of Enzymatic Hydrolysis of Lignocellulosic Biomass : A Literature Review 원문보기

Journal of forest science, v.26 no.2, 2010년, pp.137 - 148  

김영숙 (국민대학교 삼림과학대학)

Abstract AI-Helper 아이콘AI-Helper

The high costs for ethanol production with lignocellulosic biomass as a second generation energy materials currently deter commercialization of lignocellulosic biomass, especially wood biomass which is considered as the most recalcitrant material for enzymatic hydrolysis mainly due to the high ligni...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 목질계 바이오매스를 원료로 한 바이오에탄올 생산 중 특히 효소 당화공정에 집중한 문헌연구를 통하여 목질바이오매스 기질특성과 효소 당화성과의 관계, 이를 극복하기 위한 기술 개발 등 최근 연구동향에 대해 조사하여 다음과 같은 결론을 도출하였다.
  • 이 같은 상황에서 본 총설에서는 목질계 바이오매스를 원료로 한 바이오에탄올 생산 중 특히 효소 당화공정에 집중한 문헌연구를 통하여 목질바이오매스 기질특성과 효소 당화성과의 관계, 이를 극복하기 위한 기술 개발 등 최근 연구동향에 대해 조사하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
목질계바이오매스의 특징은? 목질계바이오매스는 그 재료가 갖는 화학적 조직학적 특성상 Cellulose, Hemicellulose, Lignin과 같은 화학적 조성분이 상호 매우 견고하게 결합되어 있고, cellulose의 결정성과 같은 요소가 강하게 당화반응에 영향함으로 인해 에너지나 화학원료를 위한 공정이 쉽지 않은 것으로 알려져 있다. Cellulose의 효소 당화는 전체 반응에서 많은 영향인자들 간의 복잡한 반응이 요구되며 특히 문제가 되는 영향인자들은 cellulose의 중합도나 결정화도, 반응 시 기질의 크기 및 효소가 접근할 기질 표면적 크기나 리그닌 분포, 전처리과정에서 생산되는 효소활성 억제 물질 생산 등으로 거론되고 있다(Phillip et al, 1981; Fan et al, 1980; Fan et al, 1981; Grethlein et al, 1984; Rivers and Emert, 1988).
목질계 바이오매스가 상용화에 어려움이 있는 이유는? 목질계 바이오매스로부터 에너지 원료를 얻어내기 위해서는 우선 상술한 영향인자들에 대한 세심한 연구를 통해 해결방안을 모색한 공정이 도출되어야 효율성을 갖출 것으로 평가되고 있다. 이러한 이유로 목질바이오매스는 효소 당화성을 증진시키기 위한 전처리, 단당류를 얻기 위한 당화처리, 단당류(육탄당, 오탄당)를 발효시키는 기술 등이 전분계 원료에 비해 복잡한 생산 공정과 비용이 소요되어 상용화에 어려움을 가지고 있는 것이 사실이다(Sassner et al, 2008).
Cellulose의 효소 당화에서 문제가 되는 영향인자는? 목질계바이오매스는 그 재료가 갖는 화학적 조직학적 특성상 Cellulose, Hemicellulose, Lignin과 같은 화학적 조성분이 상호 매우 견고하게 결합되어 있고, cellulose의 결정성과 같은 요소가 강하게 당화반응에 영향함으로 인해 에너지나 화학원료를 위한 공정이 쉽지 않은 것으로 알려져 있다. Cellulose의 효소 당화는 전체 반응에서 많은 영향인자들 간의 복잡한 반응이 요구되며 특히 문제가 되는 영향인자들은 cellulose의 중합도나 결정화도, 반응 시 기질의 크기 및 효소가 접근할 기질 표면적 크기나 리그닌 분포, 전처리과정에서 생산되는 효소활성 억제 물질 생산 등으로 거론되고 있다(Phillip et al, 1981; Fan et al, 1980; Fan et al, 1981; Grethlein et al, 1984; Rivers and Emert, 1988). 한편 cellulose 효소 당화에 영향하는 인자로는 endo-glucanase(EG), cellobiogydrase(CBH), β-glucosidase(BGL)와 같은 여러 cellulase 상호 간의 상승작용, 기질에 대한 효소 흡착성 등이 연구되고 있다(Henrissat et al, 198; Nidetzky et al, 1994).
질의응답 정보가 도움이 되었나요?

참고문헌 (101)

  1. Kim YS, T. Gorman, 2007. Biomass energy in the USA: A literature review (III)- bioetanol production from biomass and feedstock supply. Mokchae Konghak 35: 1-10. 

  2. Alkasrawi, M., T. Eriksson, J. Borjesson, A. Wingren, M. Galbe, F. Tjerneld, and G. Zacchi. 2003. The effect of tween-20 on simultaneous saccharification and fermentation of softwood of ethanol, Enzyme microb. Tech. 33(1): 71-78. 

  3. Balan, V., L. D. C. Sousa, S. P. S. Chundawat, and D. Marshall, L. N. arma and C. K. Chambliss, B. E. Dale. 2009. Enzymatic digestibility and pretreatment degradation products of AFEX-treated hardwoods (Populus nigra), Biotechnol. Prog., 25: 365-375. 

  4. Ballesteros, M., J. M. Oliva, M. J. Negro, P. Manzanares, and I. Ballesteros. 2004. Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875, Process biochem. 39(12): 1843-1848. 

  5. Borjesson, J., R. Peterson, F. Tjerneld. 2007 Enhanced enzymatic conversion of softwood lignocellulose by poly(ethylene glycol) addition, Enzyme microb. Tech., 40: 754-762. 

  6. Chen Chengci, 2008. Biomass for ethanol and cropping systems for bioenergy, Montana State university, http://www.harvestcleanenergy.org/conference/HCE5/H CE5_PPTs/Chen.pdf. 

  7. Chum, H. L., L. J. Douglas, D. A. Feinberg and H. A. Schroeder. 1985. Evaluation of pretreatments of biomass for enzymatic hydrolysis of cellulose, Solar energy research institute, Golden, Colorado. 

  8. Chundawat, S. P., B. Venkatesh, and B. E. Dale. 2007. Effect of particle size based separation of milled corn stover on AFEX pretreatment and enzymatic digestibility, Biotechnol. Bioeng. 96(2): 219-231. 

  9. Coughlan, M. P. 1990. Cellulose degradation by fungi, p.1-35. In W. M. Fogarty and C. T. Kelly(ed.), Microbial enzymes and biotechnology, 2nd ed., Elsevier Applied Science, London, UK. 

  10. Dadi, A. P., S. Varanasi, C. A. schall. 2006. Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol. Bioeng. 95(5): 904-910. 

  11. Delmer, D. P., and Y. Amor. 1995. Cellulose biosynthesis. Plant cell 7(7): 987-1000. 

  12. Divne, C., J. Stahlberg, T. T. Teeri, T.A. Jones. 1998. High-resolution crystal structures reveal how a cellulose chain is bound in the 50 $\AA$ long tunnel of cellobiohydrolase I from Trichoderma reesei. J. Mol. Biol. 275: 309-325. 

  13. Donohoe, B. S., M. J. Selig, S. Viamajala, T. B. Vinzant, W. S. Adeny, M. E. Himmel. 2009. Detecting cellulase penetration Into corn stover cell walls by immuno-electron microscopy, Biotechnology and boiengineering, 103(3): 480-489. 

  14. EERE,2008. Biomass multi-year program plan, U.S.Department of Energy. 

  15. Eeriksson, T., J. Borjesson, F. Tjerneld. 2002. Mechanism of surfactant effect in enzymeatic hydrolysis of lignocellulose. Enzyme and microbial technology 31: 353-364. 

  16. Eggeman, T. and R. T. Elander. 2005. Process and economic analysis of pretreatment techmologies, Bioresour Technol. 96(18): 2019-2025. 

  17. Eklund, R. and G. Zacchi. 1995. Simultaneous saccharification and fermentation of steam-pretreated willow. Enzyme microb. Tech. 17(3): 255-259. 

  18. Eriksson, T., J. Borjesson, and F. Tjerneld. 2002. Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme microb. Tech. 31: 353-364. 

  19. Esteghlalian, A. R., M. Bilodeau, S. D. Mansfield, and J. N. Saddler. 2001. Do enzymatic hydrolyzability and simons' stain reflect the changes in the accessibility of mignocellulosic substrates to cellulase enzymes?, Biotechnology Progress 17(6): 1049-1054. 

  20. Fan, L. T., Y. -H. Lee, D. H. Beardmore. 1980. Mechanism of the enzymatic hydrolysis of cellulose: effect of major structural features of cellulose on enzymatic hydrolysis. Biotechnol. Bioeng. 22: 177-199. 

  21. Fan, L. T., Y. -H. Lee, D. R. Beardmore. 1981. The influence of major structural features of cellulose on rate of enzymatic hydrolysis. Biotechnol. Bioeng. 23: 419-424. 

  22. Galbe, M. and G. Zacchi. 2002. A review of the production of ethanol from softwood. Appl. Microbiol. Biotechnol. 59(6): 618-628. 

  23. Grethlein, H. E., D. C. Allen, A. O. Converse. 1984. A comparative study of the enzymatic hydrolysis of acid-pretreated white pine and mixed hardwood, Biotechnol. Bioeng. 26: 1498-1505. 

  24. Gupta, R., and Y. Y. Lee. 2009. Mechanism of cellulase reaction on pure cellulosic substrates, Biotechnol. Bioeng. 102(6): 1570-1581. 

  25. Hari Krishna, S, and G. V. Chowdary. 2001. Simultaneous saccharification and fermentation of lignocellulosic wastes to ethanol using a thermotolerant yeast. Bioresource Technol. 77(2): 193-196. 

  26. Haynes C. A., W. Norde. 1994. Globular proteins at solid/liquid interfaces. Colloid Surface B. 2: 517-566. 

  27. Henrissat, B., H. Driguez, C. Viet, M. Schulein. 1985. Synergism of cellulases from Trichoderma reesei in the degradation of cellulose. Biotechnology 3: 722-726. 

  28. Henrissat, B., M. Claeyssens, P. Tomme, L. Lemesle, and J. P. Mornon. 1989. Cellulase families revealed by hydrophobic cluster analysis. Gene 81: 83-95. 

  29. Henrissat, B.. 1994. Cellulases and their ineraction with cellulose. Cellulose 1: 169-196. 

  30. Holtzapple, M. T., J. H. Jun, G. Ashok, S. L. Patibandla, and B. E. dale. 1991. The ammonia freeze explosion (AFEX) process - A practical lignocellulose pretreatment, Appl. Biochem. Biotech. 28-9: 59-74. 

  31. Itoh, H., M. Wada, Y. Honda, M. Kuwahara, and T. Watanabe. 2003. Bioorganosolve pretreatments for simultaneous saccharification and fermentation of beech wook by ethanolysisi and white rot fungi. J. Biotechnol. 103: 273-280. 

  32. Jeoh, T., C. I. Ishizawa, M. F. Davis, M. E. Himmel, W. S. Andey, D. K. Johnson. 2007. Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol. Boieng. 98: 112-122. 

  33. Jorgensen, H., J. P. Kutter, and L. Olsson. 2003. Separation and quantification of cellulases and hemicellulases by capillary electrophoresis. Anal. Biochem. 317(1): 85-93. 

  34. Kadar, Z., Z. Szengyel, K. Reczey. 2004. Simultaneous saccharification and fermentation (SSF) of industrial wastes for the production of ethanol. Ind. Crop. Prod. 20: 103-110. 

  35. Katzen, R., P. W. Madson, and D. A. Monceaux. 1995. Use of cellulosic feedstocks for alcohol production, in the alcohols textbook, Nottingham University Press. 37-46. 

  36. Khanal, S. K., R.Y. Surampalli, T. C. Zhang, B.P. Lamsal, R.D. Tyagi, and C. M. Kao. 2010. Bioenergy and biofuel from biowastes and biomass, 203, 205, ASCE 

  37. Kim, D. W., T. S. Kim, Y. K. Jeong, J. K. Lee. 1992. Adsorption kinetics and behaviors of cellulase components on microcrystalline cellulose. J. Ferment. Bioeng. 73: 461-466. 

  38. Kim, S. B., H. J. Kim, and J. C. Kim. 2006a. Enhancement of the enzymatic digestibility of waste newspaper using tween, Appl. Biochem. Biotech, 133(1): 41-57. 

  39. Klemm, D., B. Philipp, T. Heinze, U. Heinze, W. Wagenknecht. 1998. Comprehensive cellulose chemistry. I. Fundamentals and analytical methods, Weinheim, Wiley-VCH. 

  40. Kraulis P. J., G. M. Clore, T. A. Jones, G. Pettersson, J. K. C. Knowles, A Gronenborn, A. M. 1989. Determination of the three-dimensional solution structure of the C-terminal domain of cellobiohydrase I from Trichodermas reesei: A study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing. Biochemistry. 28: 7241-7257. 

  41. Kumar, R., C. E. Wyman. 2009a. Access of cellulase to cellulose and lignin for poplar soilds produced by leading pretreatment technologies, Biotechnol. Prog. 25: 807-819. 

  42. Kumar, R., C. E. Wyman. 2009b. Effect of additives on the digestibility of corn stover solids following pretreatment by leading technologies, Biotechnology and Bioeng. 102(6): 1544-1557. 

  43. Kumar. R., C. E. Wyman. 2009c. Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies. Biotechnology Progress 25(2): 302-314. 

  44. Lee, D., A. H. C. YU, J. N. Saddler. 1995. Evaluation of cellulase recycling strategies for the hydrolysis of cellulosic substrates. Biotechnol. Bioeng. 45: 328-336. 

  45. Lee, J. 1997. Biological conversion of lignocellulosic biomass to ethanol. J. Bioethanol. 56(1): 1-24. 

  46. Lee, Y. Y., P. Iyer, and R. W. Torget. 1999. Dilute-acid hydrolysis of lignocellulosic biomass. Adv. Biochem. Eng. Biotechnol. 65: 93-115. 

  47. Linde, M., M. Galbe, and G. Zacchi. 2007. Simultaneous saccharification and fermentation of steam-pretreated barely straw at low enzyme loadings and low yeast concentration. Enzyme Microb. Tech. 40(5): 1100-1107. 

  48. Lu, Y. P., B. Yang, D. Gregg, J. N. Saddler, S. D. Mansfield. 2002. Cellulase dasorption and an evaluatio of enzyme recycle during hydrolysis of steam-exploded softwood residues. Appl. Biochem. Biotechnol. 98: 641-654. 

  49. Lynd, L. R., P. J. Wemier, W. H. van Zyl, I. S. Pretorius. 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev. 66(3): 506-577. 

  50. Mabee W. E., and J. N. Saddler. 2005. IEA bioenergy task 39 liquid biofuels from biomass-progress in enzymatic hydrolysis of lignocellulosicx. Technology Report. http://www.valbiom.be/uploadPDF/Progress in Enzymatic hydrolysis.pdf. 

  51. Maija, T., N.Mar-Leena, L. Markus, & V .Lisa. 2003. Cellulases in food processing, Handbook of Food Enzymology, New york, Marcel Dekker. 

  52. Malmsten M. and J. M. ALstine. 1996. Adsorption of poly(ethlene glycol) amphiphiles to form coatings which inhibit dasorption. J. Colloid Interf. Sci. 177: 502-512. 

  53. Malmsten M., K. Emoto and J. M. ALstine. 1998. Effect of chain density on inhibition of protein adsorption by poly(ethylene glycol)-based coationgs. J. Colloid Interf. Sci. 2020: 507-517. 

  54. MarketResearchAnalyst.com, 2008. World's ethanol production forecast 2008-2012. 

  55. Mansfield, S. D., C. Mooney, and J. N. Saddler. 1999. Substrate and enzyme characteristics that limit cellulose hydrolysis. Bioethanol. Prog. 15: 804-816. 

  56. Marsden, W. L., P. P. Gray, and M. Mandels. 1985. Enzymatic hydrolysis of cellulose in lignocellulosic materials. Critical Reviews in Biotechnology 3(3): 235-276. 

  57. McMillan, J. D. 1994. Pretreatment of lignocellulosic biomass. In: Enzymatic Conversion of Biomass for Fuels Production, ACS Symposium Series, pp 292-324. 

  58. Mes-Hartree, M., and J. N. Saddler. 1983. The nature of inhibitory metarials present in pretreated lignocellulosic substrates which inhibit the enzymic hydrolysis of cellulose. Biotechnol. Lett. 5(8): 531-536. 

  59. Mizutani, C., K. Scthumdhavan, P. Howley, and N. Bertoniere. 2002. Effect of a nonionic surfactant on Trichoderma cellulase treatments of regenerated cellulose and cotton yarns. Cellulose 9(1): 83-89. 

  60. Mosier, N. S., R. Hendrickson, M. Brewer, N. Ho, M. Sedlak, R. Dreshel, G. Welch, B. S. Dien, A. Aden, and M. R. Ladisch. 2005c. Industrial scale-up of pH-controlled liquid hot water pretreatment of corn fiber for fuel ethanol production, Appl. Biochem. Biotech. 125(2): 77-97. 

  61. Mosier, N., R. Hendrickson, N. HO, M. Sedlak, and M. R. Ladisch. 2005a. Optimization of pH controlled liquid hot waterpretreatment of corn stover. Bioresouce Technol. 96(18): 1986-1993. 

  62. Mosiera, N., C. Wyman, B. Dalec, R. Elanderd, Y. Y. Lee, M. Holtzapplef, and M. Ladischa. 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology. 96(6): 673-686. 

  63. Negro, M. J., P. Manzanares, I. Ballesteros, J. M. Oliva, A. Cabanas and M. Ballesteros. 2003. Hydrothermal pretreatment conditions to enhance ethanol production from poplar biomass. Appl. Biochem. Biotech. 105-108: 87-100. 

  64. Nidetzky, B., W. Steiner, M. Hyan, M. Claeyssens. 1994. Cellulose hydrolysis by the cellulases from Trichoderma reesei: a new model for synergistic interaction. Biochem. J. 298: 705-710. 

  65. Nielsen, A. D., L. Arleth, P. Westh. 2005. Analysis of protein-surfactant interractions-a titration calorimetric and fluorescence spectroscopic investigation of interactions between humicola insolens cutinase and an anionic surfactant. Biochimica et biophysica Acta 1752: 124-132. 

  66. Ogier, J. C., D. Ballerini, J. P. Leygue, L. Rigal, and J. Pourquie. 1999. "Ethanol production from lignocellulosic biomass," Oil & gas science and technology / revuede l'Institut Francasi du Petrole. 54(1): 67-94. 

  67. Ortega, N., M. D. Busto, and M. Perez-Mateos. 2001. Kinetics of cellulose saccharification by Trichoderma reesei cellulases. Int. Biodeterior. Biodegrad. 47(1): 7-14. 

  68. Park, J. -W., K. Park, H. Song, H. Shin. 2002. Saccharification and adsorption characteristics of modified cellulase with hydrophilic/hydrophobic copolymers. Journal of Biotechnology 93: 203-208. 

  69. Pedersen, M. and A. S. Meyer. 2009. Influence of substrate particle size and wet oxidation on physical surface structures and enzymatic hydrolysis of wheat straw. Biotechnol. Prog. 25: 399-408. 

  70. Pereria, A. N., M. Mobedshahi, M. R. Ladisch. 1988. Preparation of cellodextrins. Methods Enzymol. 160: 26-43. 

  71. Peri, S., S. Karra, Y. Y. Lee, and M. N. Karim. 2007. Modeling intrinsic kinetics of enzymetic cellulose hydrolysis. Biotechnology Progress 23: 626-637. 

  72. Phillip, B., D. C. Dan, H. P. Fink. 1981. Acid and enzymatic hydrolysis on cellulose in relation to its physical. Proceedings of the international symposium on wood and pulping chemistry: stockholm, sweden, 4: 79-83. 

  73. Rabinovich, M. L., M. S. Melnick, and A. V. Bolobova. 2002. The structure and mechanism of action of celluloytic enzymes. Biochemistry (moscow) 67(8): 850-871. 

  74. Rastegari, A. A., A. -K. Borbar, A. T. -Kafrani. 2009. Interaction of cellulase with cationic surfactants: Using surfactant membrane selective electrodes and fluorescence spectroscopy. Colloods and Surfaces 73: 132-139. 

  75. Rayne, S., and G. Mazza. 2007. Trichoderma reesei derived cellulase activity in three N,N-dimethylethanolammonium akylcarboxylate ionic liquids, hdl:10101/npre. 632.1. 

  76. Reinikainen T, L. Ruohonen, T. Nevanen, L. Laaksonen, P. Kraulis, and T. A. Jones. 1992. Investigation of the function of mutated cellulose binding domains of Trichoderma reesei cellobiohydrolase I. Protein 14: 475-482. 

  77. Rivers, D. B., G. H. Emert. 1988. Factors affecting the enzymatic hydrolysis of municipal solid waste components. Biotechnol. Bioeng. 26: 278-281. 

  78. Roche, C. M., C. J. Dibble, J. S. Knutsen, J. J. Stickel, M. W. Liberatore. 2009. Particle concentration and yield stress of biomass slurries during enzymatic hydrolysis at high-solids loadings. Biotechnol Bioeng 104(2): 290-300. 

  79. Sassner P., M.Galbe, G.Zacchi, 2008. Theno-econocim evaluation of bioethanol production from three different lignocellulosic materials. Biomass and Bioenergy 32: 422-430. 

  80. Selig, M. J., S. Viamajala, S. R. Decker, M. P. Tucker, M. E. Himmel, and T. B. Vinzant. 2007. Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose. Biotechnol. Prog. 23: 1333-1339. 

  81. Shen, Y., and L. M. Wang. 2004. Kinetics of the cellulase catalyzed hydrolysis of cellulose fibers. Textile Research Journal 74(6): 539-545. 

  82. Sun, Y. and J. Cheng. 2002. Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresource Technol. 83(1): 1-11. 

  83. Taherzadeh, M. J. 1999. Ethanol from lignocellulose: Physiological effects of inhibitors and fermentation strategies, chemical reaction engineering, chalmers University of technology, Goteborg, sweden. 

  84. Taherzadeh, M. J., and K. Karimi. 2007. Enzyme-based hydrolysis progresses for ethanol from lignocellulosic materials: a review. BioResources 2(4): 707-738. 

  85. Tenggborg, C., M. Galbe, and G. Zacchi. 2001. Influence of enzyme loading and physical parameters on the enzaymatic hydrolysis of steam-pretreated softwood. Biotechnol. Prog. 17(1): 110-117. 

  86. Thaerzadeh, M. J., R. Eklund, L. Gustafsson, C. Niklasson, and G. Liden. 1997. Characterization and fermentation of dilute-acid hydrolyzates from wood. Industrial & Engineering Chemistry Research 36(11): 4659-4665. 

  87. Tu, M., R. P. Chandra, and J. N. Saddler. 2007a. Evaluating the distribution of cellulases and the recycling of free cellulases during the hydrolysis of lignocellulosic substrates. Biotechnology Progress 23(2): 398-406. 

  88. Tu, M., R. P. Chandra, and J. N. Saddler. 2007b. Recycling cellulases during the hydrolysis of steam exploded and ethanol pretreated lodgeploe pine. Biotechnol. Prog. 23: 1130-1137. 

  89. Tu, M., X. Zhang, and M. Paice, P. McFalane, and J. N. Saddler. 2009. Effect of surfactants on separate hydrolysis fermentation and simultaneous saccharification fermentation of pretreated lodgepole pine. Biotechnol. Prog. 25: 1122-1129. 

  90. Wong, K. K. Y., K. F. Deverell, K. L. Mackie, T. A. Clark, L. A. Donaldson. 1988. The relationship btween fiber porosity and cellulose digestibility in steam-exploded Pinus radiata. Biotechnol. Bioeng. 31: 447-456. 

  91. Wu, J., and L. K. Ju. 1998. Enhancing enzymatic saccharification of waste newsprint by surfactant addition. Biotechnol. Prog. 649-652. 

  92. Wyman, C. E. 1996. Handbook on Bioethanol: Production and Utilization, Washington, DC, Taylor & Francis. 

  93. Wyman, C. E., B. E. Dale, R. T. Elander, M. Holtzapple, M. R. Ladisch, Y. Y. Lee, C. Mitchinson, H. N. Saddler. 2009. Comparative sugar recovery and fermentation date following pretreatment of poplar wood by leading technolgies. Biotechnology Progress 25: 333-339. 

  94. Yang, B., C. E. Wyman. 2006. BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotechnology and Bioengineering 94(4): 611-617. 

  95. Yoshida, M., Y. Liu, S. Uchida, K. Kawarada, Y. Ukagami, H. chinose, S. Kaneko, K. Fukuda. 2008. Effects of cellulose crystallinity, hemicellulose, and lignin on the enzymatic hydrolysis of miscanthus sinensis to monosaccharides. Bioscience Biotechnology and Biochemistry 72(3): 805-810. 

  96. Zeng, M., N. S. Mosier, C. P. Huang, D. M. Sherman, and M. R. Ladisch. 2007. Microscopic examination of changes of plant cell structure in corn stover due to hot water pretreatment and enzymatic hydrolysis. Biotechnol. Bioeng. 97(2): 265-278. 

  97. Zhang, Y. -H. P., and L. R. Lynd. 2004. Towards and aggregated understanding of enzymatic hydrolysis of cellulose: non-complexed cellulose systems. Biotechnology and Bioengineering 88: 797-824. 

  98. Zhang, Y. -H. P., D. J. Schell, J. D. McMillan. 2007. Methodological analysis for determination of enzymatic digestibility of cellulosic materials. Biotechnology and Bioengineering 96(1): 188-194. 

  99. Zhang, Y. -H. P., L. R. Lynd. 2004. Toward an aggregated understanding of enzymatic hydrolysis of cellilose: noncomplexed cellulase system. Biotechnol Bioeng. 88(7):797-824. 

  100. Zhu, Z., N. Sathitsuksanoh, T. Vinzant, D. J. Schell, J. D. McMillan, Y. -H. P. Zhang. 2009. Comparative study of corn stover pretreated by dilute acid and cellulose solvent-based lignocellulose fraction: enzymatic hydrolysis, supramolecular structure, and substrate accessibility. Biotechnol. Bioeng. 103: 715-724. 

  101. Zuhai, S. A. 2008. The effect of crystallinity of cellulose on the rate of reducing sugars production by heterogeneous enzymatic hydrolysis. Bioresource Technology 99: 4078-4085. 

저자의 다른 논문 :

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로