$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Analysis of the solution structure of the human antibiotic peptide dermcidin and its interaction with phospholipid vesicles 원문보기

BMB reports, v.43 no.5, 2010년, pp.362 - 368  

Jung, Hyun-Ho (Department of Life Science, Gwangju Institute of Science and Technology) ,  Yang, Sung-Tae (Section on Membrane Biology, Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, National Institutes of Health) ,  Sim, Ji-Yeong (Department of Life Science, Gwangju Institute of Science and Technology) ,  Lee, Seung-Kyu (Department of Life Science, Gwangju Institute of Science and Technology) ,  Lee, Ju-Yeon (Department of Life Science, Gwangju Institute of Science and Technology) ,  Kim, Ha-Hyung (College of Pharmacy, Chung-Ang University) ,  Shin, Song-Yub (Department of Bio-Materials, Graduate School and Department of Cellular & Molecular Medicine, School of Medicine, Chosun University) ,  Kim, Jae-Il (Department of Life Science, Gwangju Institute of Science and Technology)

Abstract AI-Helper 아이콘AI-Helper

Dermcidin is a human antibiotic peptide that is secreted by the sweat glands and has no homology to other known antimicrobial peptides. As an initial step toward understanding dermcidin's mode of action at bacterial membranes, we used homonuclear and heteronuclear NMR to determine the conformation o...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • 8 constraints per residue. After carrying out the simulated annealing calculations starting with 100 random structures, the 20 final structures were selected based on the lowest CYANA target function and were further refined using CNS with a water shell refinement protocol. The average CYANA target function for the 20 final structures was 0.
  • We chose to use 50% TFE as the solvent over 100 mM SDS micelles because all of the signals were well dispersed, without severe overlapping of the NMR peaks. Complete sequence-specific resonance assignments (Fig. 1B) were established from 3D 15N-TOCSY-HSQC and 15N-NOESY-HSQC, combined with a series of 2D analyses (DQF-COSY, TOCSY and NOESY). Identification of the amino acid spin system was based on scalar coupling patterns observed in 3D 15N-TOCSY-HSQC, 2D DQF-COSY and 2D TOCSY.
  • It was recently reported that although the antimicrobial activity of DCD-1 originates with its binding to bacterial membranes, the bacterial membrane not very permeable to DCD-1 (18). To investigate the interaction between DCD-1 and the bacterial membrane in more detail, we carried out structure-based analysis using the NMR solution structure as a model and synthesized seven DCD-derived peptides, including DCD-1, DCD-1L and five DCD fragments (Table 1). Among the fragments, DCD (1-16) included helixes I and II (Fig.

이론/모형

  • DCD-1 and its fragments were synthesized using the solid phase method with Fmoc (fluoren-9-yl-methoxycarbonyl)-chemistry. Fmoc-protected peptides were deprotected and cleaved using a mixture of TFA (trifluoroacetic acid), phenol, water, thioanisole and 1,2-ethandithiol (82.
  • 0 Hz, it was constrained in the range of −120° ± 40°. On the basis of these constraints, structure calculations were carried out using CYANA 2.1 with torsion angle dynamics (29). Twenty structures were calculated from 100 randomized structures based on the target function and processed with water refinement and molecular dynamics simulations using CNS (30).
본문요약 정보가 도움이 되었나요?

참고문헌 (30)

  1. Zasloff, M. (2002) Antimicrobial peptides of multicellular organisms. Nature 415, 389-395. 

  2. Selsted, M. E. and Ouellette, A. J. (2005) Mammalian defensins in the antimicrobial immune response. Nat. Immunol. 6, 551-557. 

  3. Ganz, T. and Lehrer, R. I. (1998) Antimicrobial peptides of vertebrates. Curr. Opin. Immunol. 10, 41-44. 

  4. Finlay, B. B. and Hancock, R. E. (2004) Can innate immunity be enhanced to treat microbial infections? Nat. Rev. Microbiol. 2, 497-504. 

  5. Epand, R. M. and Vogel, H. J. (1999) Diversity of antimicrobial peptides and their mechanisms of action. Biochim. Biophys. Acta. 1462, 11-28. 

  6. Bulet, P., Stocklin, R. and Menin, L. (2004) Anti-microbial peptides: from invertebrates to vertebrates. Immunol. Rev. 198, 169-184. 

  7. Tossi, A., Sandri, L. and Giangaspero, A. (2000) Amphipathic, alpha-helical antimicrobial peptides. Biopolymers. 55, 4-30. 

  8. Hancock, R. E. and Scott, M. G. (2000) The role of antimicrobial peptides in animal defenses. Proc. Natl. Acad. Sci. U.S.A. 97, 8856-8861. 

  9. Huang, H. W. (2000) Action of antimicrobial peptides: two-state model. Biochemistry. 39, 8347-8352. 

  10. Yang, L., Harroun, T. A., Weiss, T. M., Ding, L. and Huang, H. W. (2001) Barrel-stave model or toroidal model? A case study on melittin pores. Biophys. J. 81, 1475-1485. 

  11. Matsuzaki, K., Sugishita, K., Ishibe, N., Ueha, M., Nakata, S., Miyajima, K. and Epand, R. M. (1998) Relationship of membrane curvature to the formation of pores by magainin 2. Biochemistry. 37, 11856-11863. 

  12. Christensen, B., Fink, J., Merrifield, R. B. and Mauzerall, D. (1988) Channel-forming properties of cecropins and related model compounds incorporated into planar lipid membranes. Proc. Natl. Acad. Sci. U.S.A. 85, 5072-5076. 

  13. Shai, Y. and Oren, Z. (2001) From "carpet" mechanism to de-novo designed diastereomeric cell-selective antimicrobial peptides. Peptides. 22, 1629-1641. 

  14. Ladokhin, A. S. and White, S. H. (2001) 'Detergent-like' permeabilization of anionic lipid vesicles by melittin. Biochim. Biophys. Acta. 1514, 253-260. 

  15. Schittek, B., Hipfel, R., Sauer, B., Bauer, J., Kalbacher, H., Stevanovic, S., Schirle, M., Schroeder, K., Blin, N., Meier, F., Rassner, G. and Garbe, C. (2001) Dermcidin: a novel human antibiotic peptide secreted by sweat glands. Nat. Immunol. 2, 1133-1137. 

  16. Flad, T., Bogumil, R., Tolson, J., Schittek, B., Garbe, C., Deeg, M., Mueller, C. A. and Kalbacher, H. (2002) Detection of dermcidin-derived peptides in sweat by Protein-Chip technology. J. Immunol. Methods. 270, 53-62. 

  17. Lai, Y. P., Peng, Y. F., Zuo, Y., Li, J., Huang, J., Wang, L. F. and Wu, Z. R. (2005) Functional and structural characterization of recombinant dermcidin-1L, a human antimicrobial peptide. Biochem. Biophys. Res. Commun. 328, 243-250. 

  18. Steffen, H., Rieg, S., Wiedemann, I., Kalbacher, H., Deeg, M., Sahl, H. G., Peschel, A., Gotz, F., Garbe, C. and Schittek, B. (2006) Naturally processed dermcidin-derived peptides do not permeabilize bacterial membranes and kill microorganisms irrespective of their charge. Antimicrob. Agents. Chemother. 50, 2608-2620. 

  19. Matsuzaki, K. (1998) Magainins as paradigm for the mode of action of pore forming polypeptides. Biochim. Biophys. Acta. 1376, 391-400. 

  20. Simmaco, M., Mignogna, G. and Barra, D. (1998) Antimicrobial peptides from amphibian skin: what do they tell us? Biopolymers. 47, 435-450. 

  21. Gazit, E., Lee, W. J., Brey, P. T. and Shai, Y. (1994) Mode of action of the antibacterial cecropin B2: a spectrofluorometric study. Biochemistry. 33, 10681-10692. 

  22. Oren, Z. and Shai, Y. (1998) Mode of action of linear amphipathic alpha-helical antimicrobial peptides. Biopolymers. 47, 451-463. 

  23. Holak, T. A., Engstrom, A., Kraulis, P. J., Lindeberg, G., Bennich, H., Jones, T. A., Gronenborn, A. M. and Clore, G. M. (1988) The solution conformation of the antibacterial peptide cecropin A: a nuclear magnetic resonance and dynamical simulated annealing study. Biochemistry. 27, 7620-7629. 

  24. Katsu, T., Kuroko, M., Morikawa, T., Sanchika, K., Yamanaka, H., Shinoda, S. and Fujita, Y. (1990) Interaction of wasp venom mastoparan with biomembranes. Biochim. Biophys. Acta. 1027, 185-190. 

  25. Oh, D., Shin, S. Y., Lee, S., Kang, J. H., Kim, S. D., Ryu, P. D., Hahm, K. S. and Kim, Y. (2000) Role of the hinge region and the tryptophan residue in the synthetic antimicrobial peptides, cecropin A(1-8)-magainin 2(1-12) and its analogues, on their antibiotic activities and structures. Biochemistry. 39, 11855-11864. 

  26. Park, S. H., Kim, Y. K., Park, J. W., Lee, B. and Lee, B. J. (2000) Solution structure of the antimicrobial peptide gaegurin 4 by $^1H$ and $^{15}N$ nuclear magnetic resonance spectroscopy. Eur. J. Biochem. 267, 2695-2704. 

  27. Tack, B. F., Sawai, M. V., Kearney, W. R., Robertson, A. D., Sherman, M. A., Wang, W., Hong, T., Boo, L. M., Wu, H., Waring, A. J. and Lehrer, R. I. (2002) SMAP-29 has two LPS-binding sites and a central hinge. Eur. J. Biochem. 269, 1181-1189. 

  28. Cipakova, I., Gasperik, J. and Hostinova, E. (2006) Expression and purification of human antimicrobial peptide, dermcidin, in Escherichia coli. Protein. Expr. Purif. 45, 269-274. 

  29. Guntert, P. (2004) Automated NMR structure calculation with CYANA. Methods. Mol. Biol. 278, 353-378. 

  30. Brunger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J. S., Kuszewski, J., Nilges, M., Pannu, N. S., Read, R. J., Rice, L. M., Simonson, T. and Warren, G. L. (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta. Crystallogr. D. Biol. Crystallogr. 54, 905-921. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로