$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

HIFU: 현황 및 기술적 동향
High Intensity Focused Ultrasound for Cancer Treatment: Current Agenda and the Latest Technology Trends 원문보기

The journal of the Acoustical Society of Korea, v.29 no.2E, 2010년, pp.55 - 63  

서종범 (Department of Biomedical Engineering, Yonsei University)

Abstract AI-Helper 아이콘AI-Helper

High Intensity Focused Ultrasound (HIFU) is a noninvasive surgical method mainly targeting deeply located cancer tissue. Ultrasound is generated from an extemally located transducer and the beam is focused at the target volume, so that selective damage can be achieved without harm to overlying or su...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • Second, monitoring methods needs to be developed to observe treatment results during the procedure.

이론/모형

  • In order to overcome this problem, time reverse method was used on the mathematically calc냐lated time delays from target to individual transducer elements based on high resolution 3D CT image [42-48].
본문요약 정보가 도움이 되었나요?

참고문헌 (49)

  1. FDA, "Information for Manufacturers Seeking Marketing Clearance of Diagnostic Ultrasound Systems and Transducers," 2008. 

  2. G. ter Haar, "Ultrasound Focal Beam Surgery," Ultrasound in Med. & Biol., vol. 21, pp. 1089-1100, 1995. 

  3. K. Hynynen, "Focused Ultrasound Surgery Guided by MRI," Science & Medicine, vol. 3, pp. 62-71, 1996. 

  4. W. J. Fry "Action of Ultrasound on Nerve Tissue-a Review," Symposim on Ultrasound in Biology and Medicine, 1952 

  5. W. J. Fry, V. J. Wulpf. D. Tucker, and F. J. Fry, "Physical Factors involved in ultrasound induced changes in living systems: I Identification of Non-Temperature effects," J. Acoust. Soc. Am., vol. 22, pp. 867-876, 1950. 

  6. W. J. Fry, D. Tucker, F. J. Fry, and V. J. Wulpf, "Physical Factors involved in ultrasound induced changes in living systems: II Amplitude duration relations and the effect of hydrostatic pressure for nerve tissue," J. Acoust. Soc. Am., vol. 23, pp. 364-368, 1951. 

  7. L. Chen, I. Rivens, G. ter Haar, S. Riddler, C. R. Hill, and J. P. M. Bensted, "Histological Changes in rat liver tumors treated with high-intensity focused ultrasound," Ultrasound in Med. & Biol., vol. 19, pp, 67-74, 1993., 

  8. J. Overgaard, "Effect of hyperthermia on malignant cells in vivo. A review and a hypothesis," Cancer, vol. 39, pp, 2637-2646, 1977. 

  9. J, H, Kim and E, W, Hahn, "Clinical and Biological Studies of Localized Hyperthermia," Cancer Res., vol. 39, pp. 2258-2261. 1979 

  10. C. A. Cain and S. I. Umemura, "Concentric-Ring and Sector-Vortex Phased-Array Applicators for Ultrasound Hyperthermia." IEEE Trans. Microwave Theory and Techniques, vol. 5, pp. 542-551,1986. 

  11. S, I, Umemura and C, A, Cain, "The Sector-Vortex Phased Array: Acoustic Field Synthesis for Hyperthermia," IEEE Trans, UFFC, vol. 36, pp. 249-257, 1989. 

  12. H, Wan, P, VanBaren, E, S, Ebbini, and C, A. Cain, "Ultrasound Surgery: Comparison of Strategies using Phased array systems,' IEEE Trans. UFFC, vol.43, pp 1085-1097, 1996. 

  13. L. Poissonnier, J. Y. Chapelon, O. Rouvi re, L. Curiel, R. Bouvier, X. Martin, J. M. Dubernard, and A. Gelet, "Control of prostate cancer by transrectal HIFU in 227 patients," Eur Urol., vol. 51, pp 381-387. 2007. 

  14. T. J, Dubinsky, C. Cuevas, M. K. Dighe, O. Kolokythas, and J. H. Hwang, "High-Intensity Focused Ultrasound: Current Potential and Oncologic Applicalions," AJR., vol. 190, pp. 191-199, 2008. 

  15. W. Hong, "Thermal dose optimization for ultrasound tissue ablation: Ph. D Thesis. Univ, of Michigan, Ann Arbor. 1999. 

  16. B. C. Tran, J. Seo, T. L. Hall, J. B. Fowlkes, and C. A. Cain, "Microbubble-Enhanced Cavitation for Noninvasive Ultrasound Surgery," IEEE Trans UFFC, vol. 50, pp. 1296-1304, 2003. 

  17. T. L. Hall, J. B, Fowlkes, and C, A. Cain, "A real-time measure of cavitation induced tissue disruption by ultrasound imaging backscatter reduction," IEEE Trans UFFC, vol. 54, pp. 569-575, 2007. 

  18. J. E, Parsons, C. A. Cain, G. D. Abrams, and J. B. Fowlkes, "Spatial variability in acoustic backscatter as an indicator of tissue homogenate production in pulsed cavitational ultrasound therapy," IEEE Trans UFFC, vol. 54, pp. 576-590, 2007. 

  19. A. M. Lake, T. L. Hall, K. Kieran, J, B. Fowlkes, C. A. Cain, and W. W. Roberts, "Histotripsy: A minimally invasive technology for prostate tissue ablation in an in-vivo canine model," Urology, vol. 72, pp. 682-686, 2008. 

  20. J, Seo, B. C. Tran, T. L. Hall, J. B. Fowlkes, G. D. Abrams, M. O' Donnell, and C. A. Cain. "Evaluation of ultrasound tissue damage based on changes in image echogenicity in canine kidney,": IEEE Trans. UFFC, vol. 52, pp. 1111-1120, 2005. 

  21. G, R. Harris, "FDA regulation of clinical high intensity focused ultrasound (HIFU) devices," EMBC. pp. 145-148, 2009. 

  22. X. Fan and K. Hynynen. "A study of various parameters of spherically curved phased arrays for noninvasive ultrasound surgery," Phys. Med, Biol., vol. 41. pp, 591-608, 1996. 

  23. E. S. Ebbini, S. J. Umemura, M. Ibbini, and C. A. Cain, "A Cylindrical-section Ultrasound Phased-Array Applicator for Hyperthermia Cancer Therapy," IEEE Trans. UFFC, vol, 35, pp. 561-572, 1988. 

  24. D. R. Daum and K. Hynynen, "A 256-element ultrasonic phased array system for the treatment of large volumes of deep seated tissue." IEEE Trans. UFFC, vol. 46, pp. 1254-1268, 1999. 

  25. E. S. Ebbini and C. A. Cain, "Multiple-Focus Ultrasound Phased-Array Pattern Synthesis: Optimal Driving- Signal Distributions for Hyperthermia," IEEE Trans. UFFFC, vol. 36, pp. 540-548, 1989. 

  26. J. Seo and J. Lee, "Anti-fici for focused ultrasound," Int., J. Hyperther., vol. 25, pp. 566-5801, 2009. 

  27. Y. Wang, J. W. Hunt, and F. S. Foster, "Tissue Ultrasound Absorption Measurement with MRI Calorimetry," IEEE Trans, UFFC, vol. 46, pp. 1192-1200, 1999. 

  28. N. Vykhodtseva, V. Sorrenino, F. A. Jolesz, R. T. Bronson, and K. Hynynen, "MRI Detection of the Thermal Effects of Focused Ultrasound of the Brain," Ultrasound in Med. & Biol., vol. 26. pp. 871-880, 2000. 

  29. K. Hynynen, A. Chung, T. Fjield, M. Buchanan, D. Daum, V. Colucci. P. Lopath, and F, Jolesz, "Feasibility of Using Ultrasound Phased Arrays for MRI Monitored Noninvasive Surgery," IEEE Trans. UFFC, vol. 43, pp. 1043-1052, 1996. 

  30. W. C. Connor and K. Hynynen, "Patterns of thermal deposition in the skull during transcranial focused ultrasound surgery," IEEE Trans, Biomed. Eng., vol. 10, pp. 1693-1706, 2004. 

  31. X. Yin, L. M. Epstein, and K. Hynynen, "Noninvasive transesophageal cardiac thermal ablation using a 2-D focused, ultrasound phased array: a simulation study," IEEE Trans, UFFC, vol. 53, pp. 1138-1149, 2006. 

  32. J. Palussiere, R. Salomir, B. Le Bail, R. Fawaz, B. Quesson, N. Grenier, and C. Moonen, "Feasibility of MR-guided focused ultrasound with real-time temperature mapping and continuous sonication for ablation of VX2 carcinoma in rabbit thigh," Magn. Reson. Med., vol. 49, pp. 89-98, 2003. 

  33. R. Seip and E. S. Ebbini, "Noninvasive estimation 이 tissue temperature response to heating fields using diagnostic ultrasound," IEEE Trans. Biomed. Eng., vol.42, pp. 828-839, 1995. 

  34. R. Seip, P. VanBaren, C. A. Cain, and E. S. Ebbini, "Noninvasive real-time multipoint temperature control for Ultrasound phased array treatments," IEEE Trans. UFFC, vol. 43, pp. 1063-1073, 1996. 

  35. C. Simon, P. VanBaren, and E. S. Ebbini, "Two-dimensional temperature estimation using diagnostic ultrasound," IEEE Trans. UFFC, vol. 45, pp. 1088-1099, 1998. 

  36. R. Maass-Moreno, "Noninvasive temperature estimation in tissue via ultrasound echo-shifts Part J. Analytical model," J. Acoust. Soc. Am., vol. 100, pp. 2514-2521, 1996. 

  37. R. Maass-Moreno, "Noninvasive temperature estimation in tissue via ultrasound echo-shifts Part II. In vitro study," J. Acoust. Soc. Am., vol, 100, pp. 2522-2530, 1996. 

  38. L. E. Kinsler, A. R. Rey, A. B. Coppens AB, and J. V. Sanders, Fundamentals of acoustics 4th ed., Jonh Willey & Sons, 2000. 

  39. M. Pernot, M. Tanter, J. Bercoff, K. R. Waters, and M. Fink, "Temperature estimation using ultrasonic spatial compound Imaging," IEEE Trans. UFFC, vol. 51, pp. 606-615, 2004. 

  40. J. C. Bamber and C. R. Hill, "Ultrasonic attenuation and propagation speed in mammalian tissues as a function of temperature," Ultrasound Med. Biol., vol. 5, pp. 149-157, 1979. 

  41. R. J. McGough, M. L. Kessler, E. S. Ebbini, and C. A. Cain, "Treatment Planning for Hyperthermia with ultrasound phased arrays," IEEE Trans. UFFC, vol. 43, pp. 1074-1084, 1996. 

  42. J. F. Aubry, M. Tanter, M. Pernot, J. L. Thomas, and M. Fink, "Experimental demonstration of noninvasive transskull adaptive focusing based on prior computed tomography scans," J. Acoust. Soc. Am., vol. 113. pp. 84-93, 2003. 

  43. K. Hynynen. G. T. Clement, N. McDannold, N. Vykhodtseva, R. King. P. J. White, S. Vitek, and F. A. Jolesz, "A 500 element ultrasound phased array system for noninvasive local surgery of the brain -- a rabbit study with ex vivo human skulls." Magnetic Resonance Imaging, vol. 52, pp. 100-107, 2004. 

  44. G. T. Clement, P. J. White, and K. Hynynen, "Enhanced ultrasound transmission through the human skull using shear mode conversion," J. Acoust, Soc. Am., vol. 115, pp. 1356-1364, 2004. 

  45. G. T. Clement, P. J. White, R. L. King, N. McDannold, and K. Hynynen, "A magnetic resonance imaging-compatible, large scale array for trans-skull ultrasound surgery and therapy," Journal of Ultrasound in Medicine, vol. 24, pp. 1117-1125, 2005. 

  46. T. Huttunen, M. Malinen, J. P. Kaipio, P. J. White,and K. Hynynen, "A full-wave Helmholtz model for continuous-wave ultrasound transmission," IEEE Trans. UFFC, vol. 52, pp. 397-409, 2005. 

  47. P. J. White, G. T. Clement, and K. Hynynen, "Transcranial ultrasound focus reconstruction with phase and amplitude correction," IEEE Trans. UFFC, vol. 52, pp. 1518-1522, 2005. 

  48. P. J. White, G. T. Clement, and K. Hynynen, "Local frequency dependence in transcranial ultrasound transmission," Physics in Medicine and Biology, vol.51, pp. 2293-2305, 2006. 

  49. T. L. Szabo, Diagnostic ultrasound imaging: Inside out, Elsevier Academic. 2004 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로