$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Proteus vulgaris에서 유래한 리파아제의 고정화 및 바이오디젤 생산
Production of Biodiesel Using Immobilized Lipase from Proteus vulgaris 원문보기

한국미생물·생명공학회지 = Korean journal of microbiology and biotechnology, v.39 no.3, 2011년, pp.238 - 244  

윤신아 (가톨릭대학교 생명공학과) ,  한진이 (가톨릭대학교 생명공학과) ,  김형권 (가톨릭대학교 생명공학과)

초록
AI-Helper 아이콘AI-Helper

바이오디젤은 긴 사슬 지방산의 알킬 에스테르로서 동물성 지방 또는 식물성 오일과 알코올이 반응하여 에스테르 교환 반응에 의해 생성되는 대체연료이다. 지난 십여 년 동안, 다양한 리파아제를 이용한 바이오디젤 생산에 대해 연구되었다. 하지만 효소 촉매 공정을 통한 바이오디젤 생산의 경우, 높은 효소 단가로 산업적 공정에 쉽게 적용할 수 없었다. 이러한 문제점을 극복하기 위해, 저렴한 오일 원료를 선택하거나, 바이오디젤 생산에 적합한 리파아제를 스크리닝하는 과정 또는 리파아제 고정화 방법이 활발히 연구되었다. 이번 연구에서는 P. vulgaris에서 유래한 리파아제 K80을 E. coli균에서 발현하여 얻은 효소액으로 바이오디젤을 생산하였다. 재조합 리파아제 K80은 높은 발현량을 보였으며, 높은 가수분해 반응의 비활성도(specific activity)와 유기용매에서 높은 안정성을 확인했다. 리파아제 K80은 올리브 오일과 메탄올을 3-stepwise 방법을 이용하여 바이오디젤을 생산할 수 있었다. 리파아제 K80을 소수성 결합을 이용하여 담체 표면에 흡착시켜 얻은 고정화 K80을 이용하여 수용성 리파아제 K80과 동일한 방법으로 바이오디젤을 생산한 결과, 효율적으로 바이오디젤 생산을 확인했다. 고정화 K80은 다양한 식물성 오일과 메탄올을 사용하여 효과적으로 바이오디젤을 생산하였다. 고정화 K80을 이용하여 바이오디젤 생산뿐만 아니라 다른 산업적 공정에서도 활용할 수 있을 것으로 기대한다.

Abstract AI-Helper 아이콘AI-Helper

Biodiesel, mono-alkyl esters of long chain fatty acids, is one of the alternative fuels derived from renewable lipid feedstock, such as vegetable oils or animal fats. For decade, various lipases have been used for the production of biodiesel. However, the production of biodiesel by enzymatic catalys...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • coli에서 발현한 결과 매우 높은 리파아제 활성을 확인할 수 있었다[11, 12, 13]. 본 연구에서는 높은 리파아제 활성을 가진 리파아제 K80을 E. coli에서 대량 발현하여 얻은 효소액을 통해 바이오디젤 생산을 수행하고 흡착법을 통해 고정화된 리파아제 K80을 이용하여 효율적으로 바이오디젤을 생산할 수 있는지 확인하고자 한다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
바이오디젤이란 무엇인가? 바이오디젤은 긴 사슬 지방산의 알킬 에스테르로서 동물성 지방 또는 식물성 오일과 알코올이 반응하여 에스테르 교환 반응에 의해 생성되는 대체연료이다. 지난 십여 년 동안, 다양한 리파아제를 이용한 바이오디젤 생산에 대해 연구되었다.
P. vulgaris에서 유래한 리파아제 K80을 E. coli 균에서 발현하여 얻은 효소액으로 바이오디젤을 생산한 실험 결과는 어떠한가? coli균에서 발현하여 얻은 효소액으로 바이오디젤을 생산하였다. 재조합 리파아제 K80은 높은 발현량을 보였으며, 높은 가수분해 반응의 비활성도(specific activity)와 유기용매에서 높은 안정성을 확인했다. 리파아제 K80은 올리브 오일과 메탄올을 3-stepwise 방법을 이용하여 바이오디젤을 생산할 수 있었다. 리파아제 K80을 소수성 결합을 이용하여 담체 표면에 흡착시켜 얻은 고정화 K80을 이용하여 수용성 리파아제 K80과 동일한 방법으로 바이오디젤을 생산한 결과, 효율적으로 바이오디젤 생산을 확인했다. 고정화 K80은 다양한 식물성 오일과 메탄올을 사용하여 효과적으로 바이오디젤을 생산하였다. 고정화 K80을 이용하여 바이오디젤 생산뿐만 아니라 다른 산업적 공정에서도 활용할 수 있을 것으로 기대한다.
바이오디젤 생산 방법은 무엇이 있는가? 바이오디젤을 생산하는 방법으로는 크게 화학적 촉매 방법과 효소 촉매 방법이 있다. 화학적 촉매 공정이 바이오디젤 생성량이 높아 산업공정에 많이 쓰이고 있지만, 생성물인 바이오디젤과 부산물이 쉽게 분리되지 않는다는 점과 다량의 유기용매를 처리하는 과정에서 생기는 폐수와 부산물 등이 환경오염을 유발시키는 문제점을 갖고 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (24)

  1. Ackman, R. G., W. M. N. Ratnayake, and B. Olsson. 1988. The "basic" fatty acid composition of Atlantic fish oils: Potential similarities useful for enrichment of polyunsaturated fatty acids by urea complexation. J. Am. Oil Chem. Soc. 65: 136-138. 

  2. Akoh, C. C., S. W. Chang, G. C. Lee, and J. F. Shaw. 2007. Enzymatic approach to biodiesel production. J. Agric. Food Chem. 55: 8995-9005. 

  3. Bajaj, A., P. Lohan, P. N. Jha, and R. Mehrotra. 2010. Biodiesel production through lipase catalyzed transesterification: an overview. J. Mol. Catal. B Enzym. 62: 9-14. 

  4. Charpe, T. W. and V. K. Rathod. 2010. Biodiesel production using waste frying oil. Waste Manag. 31: 85-90. 

  5. Cunha, A. G., G. Fernandez-Lorente, J. V. Bevilaqua, J. Destain, L. M. Paiva, D. M. Freire, R. Fernandez-Lafuente, and J. M. Guisan. 2007. Immobilization of Yarrowia lipolytica lipase - a comparison of stability of physical adsorption and covalent attachment techniques. Appl. Biochem. Biotechnol. 146: 49-56. 

  6. Dizge, N., A. B. Keskinler, and A. Tanriseven. 2009. Biodiesel production from canola oil by using lipase immobilized onto hydrophobic microporous styrene-divinylbenzene copolymer. Biochem. Eng. J. 44: 220-225. 

  7. Du, W., Y. Y. Xu, D. H. Liu, and J. Zeng. 2004. Comparative study on lipase-catalyzed transformation of soybean oil for biodiesel production with different acyl acceptors. J. Mol. Catal. B Enzym. 30: 125-129. 

  8. Jaeger, K. E. and T. Eggert. 2002. Lipases for biotechnology. Curr. Opin. Biotechnol. 13: 390-397. 

  9. Jegannathan, K. R., S. Abang, D. Poncelet, E. S. Chan, and P. Ravindra. 2008. Production of biodiesel using immobilized lipase - a critical review. Crit. Rev. Biotechnol. 28: 253-264. 

  10. Kharrat, N., Y. B. Ali, S. Marzouk, Y. T. Gargouri, and M. Karra-Chaabouni. 2011. Immobilization of Rhizopus oryzae lipase on silica aerogels by adsorption: Comparison with the free enzyme. Process Biochem. 46: 1083-1089. 

  11. Kim, H. K., J. K. Lee, H. M. Kim, and T. K. Oh. 1996. Characterization of an alkaline lipase from Proteus vulgaris K80 and the DNA sequence of the encoding gene. FEMS Microbiol. Lett. 135: 117-121. 

  12. Kim, H. K., S. Y. Park, J. K. Lee, and T. K. Oh. 1996. Partial interfacial activation of Proteus vulgaris lipase overexpressed in Escherichia coli. Biosci. Biotechnol. Biochem. 60: 1365-1367. 

  13. Lee, H. W., S. J. Yoon, H. K. Kim, K. M. Park, T. K. Oh, and J. K. Jung. 2000. Overexpression of an alkaline lipase gene from Proteus vulgaris K80 in Escherichia coli BL21/ pKLE. Biotechnol. Lett. 22: 1543-1547. 

  14. Li, N. W., M. H. Zong, and H. Wu. 2009. Highly efficient transformation of waste oil to biodiesel by immobilized lipase from Penicillium expansum. Process Biochem. 44: 685-688. 

  15. Lu, J., L. Deng, R. Zhao, R. Zhang, F. Wang, and T. Tan. 2010. Pretreatment of immobilized Candida sp.99-125 lipase to improve its methanol tolerance for biodiesel production. J. Mol. Catal. B Enzym. 62: 15-18. 

  16. Parawira, W. 2009. Biotechnological production of biodiesel fuel using biocatalyzed transesterification: A review. Crit. Rev. Biotechnol. 29: 82-93. 

  17. Salis, A., M. Pinna, M. Monduzzi, and B. Solinas. 2008. Comparison among immobilized lipases on macroporous polypropylene toward biodiesel synthesis. J. Mol. Catal. B Enzym. 54: 19-26. 

  18. Shimada, Y., Y. Watanabe, T. Samukawa, A. Sugihara, H. Noda, H. Fukuda, and Y. Tominaga. 1999. Conversion of vegetable oil to biodiesel using immobilized Candida antarctica lipase. J. Am. Oil Chem. Soc. 76: 789-793. 

  19. Shimada, Y., Y. Watanabe, A. Sugihara, and Y. Tominaga. 2002. Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing. J. Mol. Catal. B Enzym. 17: 133-142. 

  20. Tan, T., J. Lu, K. Nie, L. Deng, and F. Wang. 2010. Biodiesel production with immobilized lipase: A review. Biotechnol. adv. 28: 628-634. 

  21. Tongboriboon, K., B. Cheirsilp, and A. H-Kittikun. 2010. Mixed lipases for efficient enzymatic synthesis of biodiesel from used palm oil and ethanol in a solvent-free system. J. Mol. Catal. B Enzym. 67: 52-59. 

  22. Wang, Y., X. Shen, Z. Li, X. Li, F. Wang, X. Nie, and J. Jiang. 2010. Immobilized recombinant Rhizopus oryzae lipase for the production of biodiesel in solvent free system. J. Mol. Catal. B Enzym. 67: 45-51. 

  23. Yang, K. S., J. H. Sohn, and H. K. Kim. 2009. Catalytic properties of a lipase from Photobacterium lipolyticum for biodiesel production containing a high methanol concentration. J. Biosci. Bioeng. 107(6): 599-604. 

  24. Yoo, H. Y., J. R. Simkhada, S. S Cho, D. H. Park, S. W. Kim, C. N. Seong, and J. C. Yoo. 2011. A novel alkaline lipase from Ralstonia with potential application in biodiesel production. Bioresour. Technol. 102: 6104-6111. 

저자의 다른 논문 :

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로