최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기정보관리학회지 = Journal of the Korean society for information management, v.28 no.1 = no.79, 2011년, pp.89 - 104
최윤수 (한국과학기술정보연구원 정보기술연구실) , 정창후 (한국과학기술정보연구원 정보기술연구실) , 조현양 (경기대학교 문헌정보학과)
Large-scaled information extraction plays an important role in advanced information retrieval as well as question answering and summarization. Information extraction can be defined as a process of converting unstructured documents into formalized, tabular information, which consists of named-entity ...
국립국어원. 2007. 전문용어 연구. 경기: 태학사.
김형철, 서형원, 김재훈, 최윤수. 2009. CRF를 이용한 대명사 참조해서 시스템. 한글 및 한국어 정보처리 학술대회 발표논문집, 21(1): 87-91.
이창기, 황이규, 오효정 등. 2006. Conditional Random Fields를 이용한 세부 분류 개체명 인식. 한국정보과학회 언어공학연구회 학술발표논문집, 18: 268-272.
Ananiadou, S. and G. Nenadic. 2006. “Automatic terminology management in biomedicine.” Text Mining for Biology and Biomedicine, 67-97.
Black, W. J. and A. Vasilakopoulos. 2002. “Language-independent named entity classification by modified transformation-based learning and by decision tree induction.” Proceedings of CoNLL 2002: 159-162.
Carreras, X., L. Marques, and L. Padro. 2002. “Named entity extraction using Ada-Boost.” Proceedings of CoNLL 2002: 167-170.
Chang, J. T., H. Schutze, and R. B. Altman. 2004. “GAPSCORE: Finding gene and protein names one word at a time.” Bioinformatics, 20(2): 216-225.
Collins, M. 2002. “Ranking algorithms for named-entity extraction: boosting and the voted perceptron.” Proceedings of ACL 2002.
CoNLL(Conference on Computational Natural Language Learning). [online]. [cited 2010.12.15]. . .
CRF(Conditional Random Fields). [online]. [cited 2010.12.15]. .
DARTS(Double-ARray Trie System). [online]. [cited 2010.12.15]. .
Elsner, M. and E. Charniak. 2007. A Generative Discourse-New Model for Text Coherence. Tech Report CS-07-04.
Extended Named Entity Hierarchy. [online]. [cited 2010.12.15]. .
Grosz, B. J., A. K. Joshi, and S. Weinstein. 1995. “Centering: A framework for modeling the local coherence of discourse.” Computational Linguistics,12(2): 203-225.
Lafferty, J., A. McCallum, and F. Pereira. 2001. “Conditional random fields: Probabilistic models for segmenting and labeling sequence data.” Proceedings of International Conference on Machine Learning, 282-289.
LDC. 2008. ACE(Automatic Content Extraction) English Annotation Guidelines for Entities, ver 6.6, Linguistic Data Consortium.
Marcus, M. P., B. Santorini, and M. A. Marcinkiewicz. 2004. “Building a large annotated corpus of English: The Penn Treebank.” Computational Linguistics, 19(2): 313- 330.
Miller, G. A. 1995. “WordNet: A lexical database for English.” Communications of the ACM, 38(11): 39-41.
MUC(Message Understanding System). [online]. [cited 2010.12.15]. .
Penn Treebank(The Penn Treebank Project). [online]. [cited 2010.12.15]. .
Sasaki, Y., S. Montemagni, P. Pezik, D. Rebholz-Schuhmann, J. McNaught. and S. Ananiadou. 2008. “BioLexicon: A lexical resource for the biology domain.” Proceedings of the Third International Symposium on Semantic Mining in Biomedicine.
Sekine S.(2010) Personal Communications. [online]. [cited 2010.12.15]. .
Tanabe, L. and W. J. Wilbur. 2002. “Tagging gene and protein names in biomedical text.” Bioinformatics, 18(8): 1124-1132.
The Gene Ontology Consortium. 2008. “The Gene ontology project in 2008.” Nucleic Acids Research, 36(Database issue): D440-D444.
Tjong Kim Sang, E. F. 2002. “Memory-based shallow parsing.” Journal of Machine Learning Research, 2(March): 559-594.
Watanabe, Y., M. Asahara, and Y. Matsumoto. 2007. “A Graph-based approach to named entity categorization in Wikipedia using conditional random fields.” Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, 649-657.
Weischedel, R., S. Pradhan, L. Ramshaw, T. Khleif, M. Palmer, N. Xue, M. Marcus, A. Taylor, C. Greenberg, E. Hovy, R. Belvin, and A. Hoston. 2007. OntoNotes Release 2.0, BBN Technologies.
Zhang, J., D. Shen, G. Zhou, J. Su, and C. L. Tan. 2004. “Enhancing HMM-based biomedical named entity recognition by studying special phenomena.” Journal of Biomedical Informatics, 37(6): 411-422.
Zhou, G., J. Zhang, J. Su, et al. 2004. “Recognizing names in biomedical texts: A machine learning approach.” Bioinformatics, 20(7): 1178-1190.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.