$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

운동학습에 따른 대뇌 보조운동영역의 활성화 변화: fMRI 사례연구
Change of activation of the supplementary motor area in motor learning: an fMRI case study 원문보기

대한물리치료학회지 = The journal of Korean Society of Physical Therapy, v.23 no.2, 2011년, pp.85 - 90  

박민철 (부산가톨릭대학교 보건과학대학 물리치료학과) ,  배성수 (대구대학교 재활과학대학 물리치료학과) ,  이미영 (대구한의대학교 보건치료대학 물리치료학과)

Abstract AI-Helper 아이콘AI-Helper

Purpose: The contribution of the supplementary motor area (SMA) to the control of voluntary movement has been revealed. We investigated the changesin the SMA for motor learning of the reaching movement in stroke patient using functional MRI. Methods: The subject was a right-handed 55 year-old woman ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 연구는 뇌졸중 환자에서 나타나는 보상 운동에 대해 치료 전략을 제공하고, 새로운 운동 패턴으로 인한 대뇌의 보조운동영역의 활성화 양상에 대해 기능적 자기공명영상을 사용하여 알아보고자 하였다.
  • 본 연구는 보상 운동 패턴을 가진 뇌졸중 환자에서 운동 학습 후 새로운 운동 패턴에 대해 대뇌 활성화 양상을 기능적 자기공명영상을 사용하여 보조운동영역의 변화 양상을 중점으로 알아보았다. 뇌졸중 후 좌측 편마비를 가진 환자에게 수동 전치를 병행한 운동 중재법을 실시하여 운동 전과 후의 근활성화과 대뇌 활성화 변화를 살펴보았다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
보상 운동은 무엇을 동반하는가? 보상 운동(compensatory movement)은 신경학적 손상 후 정상적인 운동 패턴에서 편향된 새로운 운동 패턴이다.1,2 이러한 보상 운동은 흔히 뇌졸중 환자에서 관찰되고, 그러한 운동 패턴은근 약증, 부족한 관절간 협응(poor interjoint coordination), 비정상적 근긴장으로 기인하여 불충분한 기능 회복을 동반한다.3-5 특히, 뇌졸중 환자에서의 뻗기 동작(reaching movement) 은 팔을 움직이려 할 때 어깨뼈(scapular)를 능동적으로 조절하기가 어려우며 어깨관절(shoulder joint)의 안쪽 돌림(internal rotation)을 동반하는 경향이 있다.
보상 운동은 무엇인가? 보상 운동(compensatory movement)은 신경학적 손상 후 정상적인 운동 패턴에서 편향된 새로운 운동 패턴이다.1,2 이러한 보상 운동은 흔히 뇌졸중 환자에서 관찰되고, 그러한 운동 패턴은근 약증, 부족한 관절간 협응(poor interjoint coordination), 비정상적 근긴장으로 기인하여 불충분한 기능 회복을 동반한다.
Sakai 등에 의한 운동학습 단계별 뇌활성화는 어떻게 되는가? 2,8 Sakai 등9은 운동 학습단계가 진행될수록 뇌활성화가 전두엽(frontal lobe)에서 두정엽(parietal lobe)으로 전이한다고 보고하였다. 그들은 기능적 자기 공명영상(functional magnetic resonance imaging, fMRI)를 사용하여, 운동 학습의 초기 인지 단계에서는 후외측 전전두엽(dorsolateral prefrontal cortex)과 전-보조운동영역(pre-SMA)에서 활성화되는 반면에, 후기 자동화 단계에서는 좀 더 두정엽쪽(parietal lobe; intrapariet sulcus, precuneus)으로 활성화가 이동되는 것을 증명하였다.
질의응답 정보가 도움이 되었나요?

참고문헌 (36)

  1. Levin MF, Kleim JA, Wolf SL. What do motor "Recovery" and "Compensation" mean in patients following stroke? Neurorehabil Neural Repair. 2009;23(4):313-9. 

  2. Shumway-Cook A, Woollacott M. Motor control, translating research into clinical practice. 3rd ed. PhiladelphiaLippincott Williams & Wilkins, 2007:21-45. 

  3. Bourbonnais D, Vanden Noven S. Weakness in patients with hemiparesis. Am J Occup Ther. 1989;43(5):313-9. 

  4. Levin MF. Interjoint coordination during pointing movements is disrupted in spastic hemiparesis. Brain. 1996;119(Pt 1):281-93. 

  5. Burke D. Spasticity as an adaptation to pyramidal tract injury. Adv Neurol. 1988;47:401-23. 

  6. Carr JH. Shepherd RB. Stroke rehabilitation: Guidelines for exercise and training to optimize motor skill. Oxford, Elsevier, 2004:43-72. 

  7. Cirstea MC, LevinMF. Compensatory strategies for reaching in stroke. Brain. 2000;123:940-53. 

  8. Halsband U, Lange RK. Motor learning in man: A review of functional and clinical studies. J Physiol Paris. 2006;99(4-6): 414-24. 

  9. Sakai K, Hikosaka O, Miyauchi S et al. Transition of brain activation from frontal to parietal areas in visuomotor sequence learning. J Neurosci. 1998;18(5):1827-40. 

  10. Cramer SC, MooreCI, Finklestein SP et al. A pilot study of somatotopic mapping after cortical infarct. Stroke. 2000;31(3):668-71. 

  11. Dassonville P, Lewis SM, Zhu XH et al. Effects of movement predictability on cortical motor activation. Neurosci Res. 1998;32(1):65-74. 

  12. Jang SH, Cho SH, Kim YH et al. Cortical activation changes associated with motor recovery in patients with precentral knob infarct. Neuroreport. 2004;15(3):395-9. 

  13. Lee MY, Choi JH, Rark RJ et al. Clinical characteristics and brain activation patterns of mirror movements in patients with corona radiata infarct. European Neurology. 2010;64:15-20. 

  14. Kim JS, Kim JH, Park MK et al. Comparison of cortical activation between concentric and eccentric exercise: A Pilot fMRI Study. J Kor Soc Phys Ther. 2010;22(2):25-30. 

  15. Kim YH, You SH, Ko MH et al. Repetitive transcranial magnetic stimulation-induced corticomotor excitability and associated motor skill acquisition in chronic stroke. Stroke. 2006;37(6):1471-6. 

  16. Park JW, Jang SH. The difference of cortical activation pattern according to motor learning in dominant and non dominant hand: An fMRIcase study. J Kor Soc Phys Ther. 2009;21(1):81-8. 

  17. Park JW. Kim CS. Comparison of cortical activation between tactile stimulation and two-point discrimination: An fMRI case study. J Kor Soc Phys Ther. 2010;22(4):97-101. 

  18. Park JW. Shin HK, Jang SH. Correlation between faster response time and functional activities of brain regions during cognnitive time management. J Kor Soc Phys Ther. 2010;22(2):7-14. 

  19. Oldfield RC. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia. 1971;9(1):97-113. 

  20. Sejnowski TJ. Neurobiology. Making smooth moves. Nature. 1998;394(6695):725-6. 

  21. Taylor D. Anson JG. Muscle activation patterns in stroke participants during functional reaching tasks: 'abnormal muscle synergies' or adaptive movement strategies? Physiotherapy. 2003;89(3):187-8. 

  22. Michaelsen SM, Luta A, Roby-Brami A et al. Effect of trunk restraint on the recovery of reaching movements in hemiparetic patients. Stroke. 2001;32(8):1875-83. 

  23. Reisman DS. Scholz JP. Workspace location influences joint coordination during reaching in post-stroke hemiparesis. Exp Brain Res. 2006;170:265-76. 

  24. Thielman GT, Dean CM, Gentile AM. Rehabilitation of reaching after stroke: Task-related training versus progressive resistive exercise. Arch Phys Med Rehabil. 2004;85(10):1613-8. 

  25. Sanes JN. Neocortical mechanisms in motor learning. Curr Opin Neurobiol. 2003;13(2):225-31. 

  26. Sanes JN, Donoghue JP. Plasticity and primary motor cortex. Annu Rev Neurosci. 2000;23:393-415. 

  27. Penfield W, Welch K. The supplementary motor area of the cerebral cortex; a clinical and experimental study. AMA Arch Neurol Psychiatry. 1951;66(3):289-317. 

  28. Behrens TE, Jenkinson M, Robson MD et al. A consistent relationship between local white matter architecture and functional specialisation in medial frontal cortex. Neuroimage. 2006;30(1):220-7. 

  29. Matsuzaka Y, Tanji J. Changing directions of forthcoming arm movements: Neuronal activity in the presupplementary and supplementary motor area of monkey cerebral cortex. J Neurophysiol. 1996;76(4):2327-42. 

  30. Vorobiev V, Govoni P, Rizzolatti G et al. Parcellation of human mesial area 6: Cytoarchitectonic evidence for three separate areas. Eur J Neurosci. 1998;10(6):2199-203. 

  31. Grafton ST, Salidis J, Willingham DB. Motor learning of compatible and incompatible visuomotor maps. J Cogn Neurosci. 2001;13(2):217-31. 

  32. Deecke L, Kornhuber HH, Lang W et al. Timing function of the frontal cortex in sequential motor and learning tasks. Hum Neurobiol. 1985;4(3):143-54. 

  33. Deiber MP, Passingham RE, Colebatch JG et al. Cortical areas and the selection of movement: A study with positron emission tomography. Exp Brain Res. 1991;84(2):393-402. 

  34. Rao SM, Binder JR, Hammeke TA et al. Somatotopic mapping of the human primary motor cortex with functional magnetic resonance imaging. Neurology. 1995;45(5):919-24. 

  35. Wiesendanger M, Rouiller EM, Kazennikov O et al. Is the supplementary motor area a bilaterally organized system? Adv Neurol. 1996;70:85-93. 

  36. Lang W, Zilch O, Koska C et al. Negative cortical DC shifts preceding and accompanying simple and complex sequential movements. Exp Brain Res. 1989;74(1):99-104. 

저자의 다른 논문 :

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로