$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] CIGS Thin Film Solar Cells by Electrodeposition 원문보기

전기화학회지 = Journal of the Korean Electrochemical Society, v.14 no.2, 2011년, pp.61 - 70  

Saji, Viswanathan S. (Department of Advanced Materials Chemistry, Korea University) ,  Lee, Sang-Min (Department of Advanced Materials Chemistry, Korea University) ,  Lee, Chi-Woo (Department of Advanced Materials Chemistry, Korea University)

Abstract AI-Helper 아이콘AI-Helper

Thin film solar cells with chalcopyrite $CuInSe_2/Cu(In,Ga)Se_2$ absorber materials, commonly known as "CIS/CIGS solar cells" have recently attracted significant research interest as a potential alternative energy-harvesting system for the next generation. Among the different deposition t...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

대상 데이터

  • The film was selenized by exposing to Se vapor during cool down time. The final composition of the film was Cu0.92In0.76Ga0.24Se2.00. The absorber layer in a cell yielded an overall cell efficiency of 12.
  • 93 which was adjusted by adding about 3000 Å Ga and 7200 Å In by the PVD step. The final compositions of the CIGS absorber film was CuIn0.72Ga0.47Se2.05. In a successive work, the authors achieved a near stoichiometric film employing a buffered bath.
본문요약 정보가 도움이 되었나요?

참고문헌 (69)

  1. M. Kemell, M. Ritala and M. Leskela, 'Thin film deposition methods for $CuInSe_2$ solar cells' Crit. Rev. Solid State Mater. Sci., 30, 1 (2005). 

  2. K. L. Chopra, P. D. Paulson and V. Dutta, 'Thin film solar cells: an overview' Prog. Photovolt. Res. Appl., 12, 69 (2004). 

  3. M. A. Green, 'The path to 25% silicon solar cell efficiency: history of silicon cell evolution' Prog. Photovolt. Res. Appl., 17, 183 (2009). 

  4. M. Gratzel, 'Photovoltaic and photoelectrochemical conversion of solar energy' Phil. Trans. R. Soc., 365, 993 (2007). 

  5. R. L. Stolk, H. Li, C. H. M. van der Werf and R. E. I. Schropp, 'Tandem and triple junction silicon thin film solar cells with intrinsic layers prepared by hot-wire CVD' Thin Solid Films, 501, 256 (2006). 

  6. M. A. Arturo, 'Can we improve the record efficiency of CdS/CdTe solar cells' Sol. Energy Mater. Sol. Cells, 90, 2213 (2006). 

  7. I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To and R. Noufi, '19.9%-efficient ZnO/ $CdS/CuInGaSe_2$ solar cell with 81.2% fill factor' Prog. Photovolt. Res. Appl., 16, 235 (2008). 

  8. J. J. Loferski, 'Theoretical considerations governing the choice of the optimum semiconductor for photovoltaic solar energy conversion' J. Appl. Phys., 27, 777 (1956). 

  9. S. Siebentritt, 'Wide gap chalcopyrites: material properties and solar cells' Thin Solid Films, 403-404, 1 (2002). 

  10. R. W. Birkmire, 'Compound polycrystalline solar cells: Recent progress and Y2 K perspective' Sol. Energy Mater. Sol. Cells, 65, 17 (2001). 

  11. W. N. Shafarman, R. Klenk and B. E. McCandless, 'Device and material characterization of $Cu(InGa)Se_2$ solar cells with increasing band gap' J. Appl. Phys., 79, 7324 (1996). 

  12. A. Jayapayalan, H. Sankaranamyanan, M. Shankaradas, P. Panse, R. Narayanaswamy, C. S. Ferekides and D. L. Morel, Interface mechanisms in CIGS solar cells, CP462, NCP V Photovoltaics Program Review. 1999, 152-157, Ed. M. A1-Jassim, J. P. Thornton and J. M. Gee, The American Institute of Physics. 

  13. H. W. Schock and R. Noufi, 'CIGS-based solar cells for the next millennium' Prog. Photovolt. Res. Appl., 8, 151 (2000). 

  14. S. Al. Alagappan and S. Mitra, 'Optimizing the design of CIGS-based solar cells: a computational approach' Mater. Sci. Eng. B, 116, 293 (2005). 

  15. T. Negami, M. Nishitani, N. Kohara, Y. Hashimoto and T. Wada, 'Real time composition monitoring methods in physical vapor deposition of $Cu(In,Ga)Se_2$ thin films' Mater. Res. Soc. Symp. Proc., 426, 267 (1996). 

  16. M. A. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hasoon and R. Noufi, 'Progress toward 20% efficiency in $Cu(In,Ga)Se_2$ polycrystalline thin-film solar cells' Prog. Photovolt: Res. Appl., 7, 311 (1999). 

  17. K. Ramanathan, M. A. Contreras, C. L. Perkins, S. Asher, F. S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward and A. Duda, 'Properties of 19.2% efficiency $ZnO/CdS/CuInGaSe_2$ thin-film solar cells' Prog. Photovolt: Res. Appl., 11, 225 (2003). 

  18. K. Kushiya, 'Progress in large-area Cu(InGa)Se2-based thin-film modules with the efficiency of over 13 %', Proceedings of the 3rd world conference on photovoltaic energy conversion, Osaka, Japan, May 11-18, 2003. 

  19. F. H. Karg, 'Development and manufacturing of CIS thin film solar modules' Sol. Energy Mater. Sol. Cells, 66, 645 (2001). 

  20. M. Turcu and U. Rau, 'Compositional trends of defect energies, band alignments, and recombination mechanisms in the Cu(In,Ga)(Se,S)2 alloy system' Thin Solid Films, 431-432, 158 (2003). 

  21. W. K. Metzger, I. L. Repins, M. Romero, P. Dippo, M. Contreras, R. Noufi and D. Levi, Recombination kinetics and stability in polycrystalline $Cu(In,Ga)Se_2$ solar cells, Thin Solid Films, 517, 2360 (2009). 

  22. J. F. Guillemoles, L. Kronik, D. Cahen, U. Rau, A. Jasenek and H. W. Schock, 'Stability issues of $Cu(In,Ga)Se_2$ -based solar cells' J. Phys. Chem. B, 104, 4849 (2000). 

  23. S. Shirakata, K. Ohkubo, Y. Ishii and T. Nakada, 'Effects of CdS buffer layers on photoluminescence properties of $Cu(In,Ga)Se_2$ solar cells' Sol. Energy Mater. Sol. Cells, 93, 988 (2009). 

  24. N. B. Chaure, A. P. Samantilleke, R. P. Burton, J. Young and I. M. Dharmadasa, 'Electrodeposition of p+, p, i, n and n+ type copper indium gallium diselenide for development of multilayer thin film solar cells' Thin Solid Films, 472, 212 (2005). 

  25. S. Khelifi, A. Belghachi, J. Lauwaert, K. Decock, J. Wienke, R. Caballero, C. A. Kaufmann and M. Burgelman, 'Characterization of flexible thin film CIGS solar cells grown on different metallic foil substrates' Energy Procedia, 2, 109 (2010). 

  26. S. Niki, M. Contreras, I. Repins, M. Powall, K. Kushiya, S. Ishizuka and K. Matsubara, 'CIGS absorbers and processes', Prog. Photovolt: Res. Appl., 18, 453 (2010). 

  27. M. B. Ard, K. Granath and L. Stolt, 'Growth of $Cu(In,Ga)Se_2$ thin films by coevaporation using alkali precursors' Thin Solid Films, 361-362, 9 (2000). 

  28. C. D. R. Ludwig, T. Gruhn, F. Claudia, S. Tanja, W. Johannes and K. Peter, 'Indium-gallium segregation in $CuIn_xGa_{1?x}Se_2$ : an ab initio-based Monte Carlo study' Phys. Rev. Lett., 105, 025702/1-4 (2010). 

  29. S. H. Wei, S. B. Zhang and A. Zunger, 'The effects of Ga addition to $CuInSe_2$ on its electronic, structural, and defect properties' Appl. Phys. Lett., 72, 3199 (1998). 

  30. J. Werner, J. Mattheis and U. Rau, 'Efficiency limitations of polycrystalline thin film solar cells: case of $Cu(InGa)Se_2$ ' Thin Solid Films, 480, 399 (2005). 

  31. L. Gutay and G. Bauer, 'Spectrally resolved photoluminescence studies on $Cu(InGa)Se_2$ solar cells with lateral submicron resolution' Thin Solid Films, 515, 6212 (2007). 

  32. M. A. Arturo, 'A simple model of graded band-gap $CuInGaSe_2$ solar cells' Energy Procedia, 2, 169 (2010). 

  33. S. Seyrling, S. Calnan, S. Bucheler, J. Hupkes, S. Wenger, D. Bremaud, H. Zogg and A. N. Tiwari, ' $Cu(In,Ga)Se_2$ photovoltaic devices for tandem solar cell application' Thin Solid Films, 517, 2411 (2009). 

  34. O. Savadogo, 'Chemically and electrochemically deposited thin films for solar energy materials' Sol. Energy Mater. Sol. Cells, 52, 361 (1998). 

  35. R. W. Birkmire and E. Eser, 'Polycrystalline thin film solar cells: present status and future potential' Annu. Rev. Mater. Sci., 27, 625 (1997). 

  36. J. W. Dini, "Electrodeposition- The materials science of coatings and substrates", Noyes Publications, New York, USA (1992). 

  37. S. M. Lee, Y. H. Kim, M. K. Oh, S. I. Hong, H. J. Ko and C. W. Lee, 'Electrodeposition of $Cu(In_xGa_{(1x)})Se_2 $ thin film', J. Korea Electrochem. Soc., 13, 89 (2010). 

  38. M. E. Calixto, K. D. Dobson, B. E. McCandless and R. W. Birkmire, 'Controlling growth chemistry and morphology of single bath electrodeposited $Cu(In,Ga)Se_2$ thin films for photovoltaic application' J. Electrochem. Soc., 153, G521 (2006). 

  39. J. Zank, M. Mehlin and H. P. Fritz, 'Electrochemical codeposition of indium and gallium for chalcopyrite solar cells' Thin Solid Films, 286, 259 (1996). 

  40. R. Friedfeld, R. P. Raffaelle and J. G. Mantovani, 'Electrodeposition of $CuIn_xGa_{1x}Se_2$ thin films' Sol. Energy Mater. Sol. Cells, 58, 375 (1999). 

  41. A. M. Hermann, M. Mansour, V. Badri, B. Pinkhasov, C. Gonzales, F. Fickett, M. E. Calixto, P. J. Sebastian, C. H. Marshall and T. J. Gillespie, 'Deposition of smooth $Cu(In,Ga)Se_2$ films from binary multilayers' Thin Solid Films, 361-362, 74 (2000). 

  42. M. Kaelin, D. Rudmann and A. N. Tiwari, 'Low cost processing of CIGS thin film solar cells' Solar Energy, 77, 749 (2004). 

  43. D. Lincot, J. F. Guillemoles, S. Taunier, D. Guimard, J. Sicx- Kurdi, A. Chaumont, O. Roussel, O. Ramdani, C. Hubert, J. P. Fauvarque, N. Bodereau, L. Parissi, P. Panheleux, P. Fanouillere, N. Naghavi, P. P. Grand, M. Benfarah, P. Mogensen and O. Kerrec, 'Chalcopyrite thin film solar cells by electrodeposition' Solar Energy, 77, 725 (2004). 

  44. R. N. Bhattacharya, H. Wiesner, T. A. Berens, R. J. Matson, J. Keane, K. Ramanathan, A. Swartzlander, A. Mason and R. N. Noufi, '12.3% efficient $Culn_{1-x}Ga_xSe_2$ -based device from electrodeposited precursor' J. Electrochem. Soc., 144, 1376 (1997). 

  45. R. N. Bhattacharya, W. Batchetor, H. Wiesner, F. Hasoon, J. E. Granata, K. Ramanathan, J. Alieman, J. Keane, A. Mason, R. J. Matson and R. N. Noufi, '14.1% $Culn_{1-x}Ga_xSe_2$ -based photovoltaic cells from electrodeposited precursors' J. Electrochem. Soc., 145, 3435 (1998). 

  46. R. N. Bhattacharya, J. F. Hiltner, W. Batchelor, M. A. Contreras, R. N. Noufia and J. R. Sites, '15.4% $Culn_{10-x}Ga_xSe_2$ -based photovoltaic cells from solution-based precursor films' Thin Solid Films, 361-362, 396 (2000). 

  47. R. N. Bhattacharya and A. M. Fernandez, ' $Culn_{1-x}Ga_xSe_2$ - based photovoltaic cells from electrodeposited precursor films' Sol. Energy Mater. Sol. Cells, 76, 331 (2003). 

  48. N. Guimard, J. Bodereau, J. Kurdi, J. F. Guillemoles, D. Lincot, P. P. Grand, M. BenFarrah, S. Taunier, O. Kerrec and P. Mogensen, 'Efficeicnt CIGS solar cells prepared by electrodeposition', Proceedings of the 3rd world conference on photovoltaic energy convention, Osaka, Japan, May 11-18, (2003). 

  49. A. Kampmann, J. Rechid, A. Raitzig, S. Wulff, M. Mihhailova, R. Thyenm and K. Kalberlah, 'Electrodeposition of CIGS on metal substrates', Proceedings of the MRS 2003 Spring Meeting, San Francisco, USA. 

  50. M. Ganchev, J. Kois, M. Kaelin, S. Bereznev, E. Tzvetkova, O. Volobujeva, N. Stratieva and A. Tiwari, 'Preparation of $Cu(In,Ga)Se_2$ layers by selenization of electrodeposited Cu-In-Ga precursors' Thin Solid Films, 511-512, 325 (2006). 

  51. P. J. Dale, A. P. Samantilleke, G. Zoppi, I. Forbes, S. Roncallo and L. M. Peter, 'Deposition and characterization of copper chalcopyrite based solar cells using electrochemical techniques' ECS Transactions, 6, 535 (2007). 

  52. R. N. Bhattacharya, W. Batchelor, J. F. Hiltner and J. R. Sites, 'Thin-film $CuIn_{1-x}Ga_xSe_2 $ photovoltaic cells from solution-based precursor layers' Appl. Phys. Lett., 75, 1431 (1999). 

  53. Y. Lai, F. Liu, Z. Zhang, J. Liu, Y. Li, S. Kuang, J. Li and Y. Liu, 'Cyclic voltammetry study of electrodeposition of $Cu(In,Ga)Se_2$ thin films' Electrochim. Acta, 54, 3004 (2009). 

  54. S. Aksu, J. Wang and B. M. Basol, 'Electrodeposition of In-Se and Ga-Se thin films for preparation of CIGS solar cells' Electrochem. Solid-State Lett., 12, D33 (2009). 

  55. T. Matsuoka, Y. Nagahori and S. Endo, 'Preparation and characterization of electrodeposited $CuGa_xIn_{1-x}Se_2 $ thin films' Jpn. J. Appl. Phys., 33, 6105 (1994). 

  56. D. Xia, J. Li, M. Xu and X. Zhao, 'Electrodeposited and selenized CIGS thin films for solar cells' J. Non Cryst. Solids, 354, 1447 (2008). 

  57. A. M. Fer´nadeza and R. N. Bhattacharya, 'Electrodeposition of $CuIn_{1-x}Ga_xSe_2 $ precursor films: optimization of film composition and morphology' Thin Solid Films, 474, 10 (2005). 

  58. R. N. Bhattacharya, W. Batchelor, K. Ramanathan, M. A. Contreras and T. Moriarty, 'The performance of $CuIn_{1-x}Ga_xSe_2 $ -based photovoltaic cells prepared from low-cost precursor films' Sol. Energy Mater. Sol. Cells, 63, 367 (2000). 

  59. J. Kois, M. Ganchev, M. Kaelin, S. Bereznev, E. Tzvetkova, O. Volobujeva, N. Stratieva and A.N. Tiwari, 'Electrodeposition of Cu-In-Ga thin metal films for $Cu(In,Ga)Se_2$ based solar cells' Thin Solid Films, 516, 5948 (2008). 

  60. F. Kang, J. Ao, G. Sun, Q. He and Y. Sun, 'Properties of $CuInxGa_{1x}Se_2$ thin films grown from electrodeposited precursors with different levels of selenium content' Curr. Appl. Phys., 10, 886 (2010). 

  61. M. Engelmann, B. E. McCandless and R. W. Birkmire, 'Formation and analysis of graded $Cu(In(Se_{1-y}S_y)_2$ ' Thin Solid Films, 387, 14 (2001). 

  62. I. Dirnstorfer, W. Burkhardt, W. Kriegseis, I. Osterreicher, H. Alves, D. M. Hofmann, O. Ka, A. Polity, B. K. Meyer and D. Braunger, 'Annealing studies on $CuIn(Ga)Se_2$ : the influence of gallium' Thin Solid Films, 361-362, 400 (2000). 

  63. Y. P. Fu, R. W. You and K. K. Lew, ' $CuIn_{1x}Ga_xSe_2$ absorber layer fabricated by pulse-reverse electrodeposition technique for thin film solar cell' J. Electrochem. Soc., 156, D553 (2009). 

  64. R. N. Bhattacharya, 'Electrodeposited two-layer Cu-In-Ga-Se/In-Se thin films' J. Electrochem. Soc., 157, D406 (2010). 

  65. D. D. Shivagan, P. J. Dale, A. P. Samantilleke and L. M. Peter, 'Electrodeposition of chalcopyrite films from ionic liquid electrolytes' Thin Solid Films, 515, 5899 (2007). 

  66. R. Inguanta, P. Livreri, S. Piazza and C. Sunseri, 'Fabrication and photoelectrochemical behavior of ordered CIGS nanowire arrays for application in solar cells' Electrochem. Solid-State Lett., 13, K22 (2010). 

  67. J. E. Jaffe and A. Zunger, 'Theory of band gap anomaly in $ABC_2$ chalcopyrite semiconductors' Phys. Rev. B., 29, 1882 (1984). 

  68. K. Yoon, J. Song, S. Kim, J. Yun, S. Ahn and J. Lee, 'Development of CIS-based compound thin film solar cells', KIER-A62419, Korea Institute of Energy Research, 2006. 

  69. S. R. Kodigala, 'Thin films and nanostructures- $Cu(In_{1-x}Ga_x)Se_2$ based thin film solar cells' Vol. 35, Academic Press, Elsevier, San Diego (2010). 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로