$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

구조생물정보학의 신약개발 적용 원문보기

정보과학회지 = Communications of the Korean Institute of Information Scientists and Engineers, v.29 no.4, 2011년, pp.26 - 32  

이슬 (Purdue University)

초록이 없습니다.

참고문헌 (46)

  1. Altman, R.B. & Dugan, J.M., "Defining bioinformatics and structural bioinformatics," Structural Bioinformatics pp. 3-14, 2005. 

  2. Weigelt, J., "Structural genomics-impact on biomedicine and drug discovery," Experimental Cell Research 316, pp.1332-8, 2010. 

  3. Mandell, D.J. & Kortemme, T., "Backbone flexibility in computational protein design," Currrent Opinion in Biotechnology 20, pp.420-8, 2009. 

  4. Ratti, E. & Trist, D., "The continuing evolution of the drug discovery process in the pharmaceutical industry," Farmaco 56, pp.13-9, 2001. 

  5. Chen, Y., Li, Z. & Ung, C., "Computational method for drug target search and application in drug discovery," Molecular Engineering of Biological and Chemical Systems (MEBCS) pp.1-8, 2003. 

  6. Blundell, T.L. et al., "Structural biology and bioinformatics in drug design: Opportunities and challenges for target identification and lead discovery," Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 361, pp.413-23, 2006. 

  7. Rohl, C. et al., "Modeling structurally variable regions in homologous proteins with Rosetta," Proteins 55, pp.656-77, 2004. 

  8. Chen, H. & Kihara, D., "Effect of using suboptimal alignments in template-based protein structure prediction," Proteins 79, pp. 315-34, 2011. 

  9. Zhou, H. & Skolnick, J., "Improving threading algorithms for remote homology modeling by combining fragment and template comparisons," Proteins 78, pp. 2041-8, 2010. 

  10. Peng, J. & Xu, J., "Low-homology protein threading," Bioinformatics 26, pp.i294-300, 2010. 

  11. Kolinski, A., "Protein modeling and structure prediction with a reduced representation," Acta Biochimica Polonica 51, pp. 349-71, 2004. 

  12. Li, B. et al., "Characterization of local geometry of protein surfaces with the visibility criterion," Proteins 71, pp. 670-683, 2008. 

  13. Kalidas, Y. & Chandra, N., "PocketDepth: A new depth based algorithm for identification of ligand binding sites in proteins," Journal of Structural Biology 161, pp. 31-42, 2008. 

  14. Huang, B. & Schroeder, M., "LIGSITEcsc: Predicting ligand binding sites using the Connolly surface and degree of conservation," BMC Structural Biology 6, p.19, 2006. 

  15. Xie, L., Xie, L. & Bourne, P.E., "A unified statistical model to support local sequence order independent similarity searching for ligand-binding sites and its application to genome-based drug discovery," Bioinformatics 25, pp.i305-312, 2009. 

  16. Alonso, H., Bliznyuk, A. a & Gready, J.E., "Combining docking and molecular dynamic simulations in drug design," Medicinal Research Reviews 26, pp.531-68, 2006. 

  17. Chen, Y. & Shoichet, B.K., "Molecular docking and ligand specificity in fragment-based inhibitor discovery," Nature Chemical Biology 5, pp. 358-64, 2009. 

  18. Sael, L. & Kihara, D., "Binding ligand prediction for proteins using partial matching of local surface patches," International Journal of Molecular Sciences 11, pp. 5009-5026, 2010. 

  19. Chikhi, R., Sael, L. & Kihara, D., "Real-time ligand binding pocket database search using local surface descriptors," Proteins 78, pp. 2007-2028, 2010. 

  20. Desjarlais, R.L., "Using computational techniques in fragment-based drug discovery," Methods in Enzymology 493, pp. 137-55, 2011. 

  21. Villar, H.O. & Hansen, M.R., "Computational techniques in fragment based drug discovery," Current Topics in Medicinal Chemistry 7, pp. 1509-1513, 2007. 

  22. Highsmith, J., "Biologic Therapeutic Drugs: Technologies and Global Markets (BIO079A)," 2011 at 

  23. Lippow, S.M. & Tidor, B., "Progress in computational protein design," Current Opinion in Biotechnology 18, pp. 305-11, 2007. 

  24. Bellows, M.L. & Floundas, C.A., "Computational methods for de novo protein design and its applications to the human immunodeficiency virus 1, purine nucleoside phosphorylase, ubiquitin specific protease 7, and histone demethylases," Current Drug Target 11, pp. 264-278, 2010. 

  25. Rosenberg, M. & Goldblum, A., "Computational protein design: A novel path to future protein drugs," Current Pharmaceutical Design 12, pp. 3973-97, 2006. 

  26. Ventura, S. et al., "Conformational strain in the hydrophobic core and its implications for protein folding and design," Nature Structural Biology 9, pp. 485-93, 2002. 

  27. Filikov, A.V. et al., "Computational stabilization of human growth hormone," Protein Science 11, pp. 1452-1461, 2002. 

  28. Malakauskas, S.M. & Mayo, S.L., "Design, structure and stability of a hyperthermophilic protein variant," Nature Structural Biology 5, pp. 470-475, 1998. 

  29. Slovic, A.M. et al., "Computational design of watersoluble analogues of the potassium channel KcsA," Proceedings of the National Academy of Sciences 101, pp. 1828-33, 2004. 

  30. Slovic, A.M. et al., "Computational design of a watersoluble analog of phospholamban," Protein Science 12, pp. 337-48, 2003. 

  31. Strop, P. & Mayo, S.L., "Contribution of surface salt bridges to protein stability," Biochemistry 39, pp. 1251-1255, 2000. 

  32. Berezovsky, I.N., Zeldovich, K.B. & Shakhnovich, E.I., "Positive and negative design in stability and thermal adaptation of natural proteins," PLoS Computational Biology 3, e52, 2007. 

  33. Samish, I. et al., "Theoretical and Computational Protein Design," Annual Review of Physical Chemistry pp. 129-149, 2010. 

  34. Bolon, D.N. & Mayo, S.L., "Enzyme-like proteins by computational design," Proceedings of the National Academy of Sciences 98, 14274, 2001. 

  35. Chevalier, B.S. et al., "Design, activity, and structure of a highly specific artificial endonuclease," Molecular Cell 10, pp. 895-905, 2002. 

  36. Bolon, D.N. et al., "Specificity versus stability in computational protein design," Proceedings of the National Academy of Sciences 102, pp. 12724-9, 2005. 

  37. Rothlisberger, D. et al., "Kemp elimination catalysts by computational enzyme design," Nature 453, pp. 190-5, 2008. 

  38. Khersonsky, O. et al., "Evolutionary optimization of computationally designed enzymes: Kemp eliminases of the KE07 series," Journal of Molecular Biology 396, 1025-42, 2010. 

  39. Sircar, A. & Gray, J.J., "SnugDock: Paratope structural optimization during antibody-antigen docking compensates for errors in antibody homology models," PLoS Computational Biology 6, e1000644, 2010. 

  40. Reichert, J. & Pavlou, A., "From the analyst?s couch: Monoclonal antibodies market," Nature Reviews Drug Discovery 3, pp. 383-384, 2004. 

  41. Schwede, T. et al., "Outcome of a workshop on applications of protein models in biomedical research," Structure 17, pp. 151-9, 2009. 

  42. Kuhlman, B. et al., "Design of a novel globular protein fold with atomic-level accuracy," Science 302, pp. 1364-8, 2003. 

  43. Bender, G.M. et al., "De novo design of a single-chain diphenylporphyrin metalloprotein," Journal of the American Chemical Society 129, pp. 10732-40, 2007. 

  44. Jiang, L. et al., "De novo computational design of retro-aldol enzymes," Science 319, pp. 1387-91(2008). 

  45. Fry, H.C. et al., "Computational design and elaboration of a de novo heterotetrameric alpha-helical protein that selectively binds an emissive abiological , (porphinato) zinc chromophore," Journal of the American Chemical Society 132, pp. 3997-4005, 2010. 

  46. Suarez, M. & Jaramillo, A., "Challenges in the computational design of proteins," Journal of the Royal Society Suppl 4, pp. S477-91, 2009. 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로