$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 삼중 주기적 최소곡면을 이용한 조직공학을 위한 생체모사 스캐폴드의 컴퓨터응용 설계 및 제작
Computer-aided Design and Fabrication of Bio-mimetic Scaffold for Tissue Engineering Using the Triply Periodic Minimal Surface 원문보기

한국정밀공학회지 = Journal of the Korean Society for Precision Engineering, v.28 no.7, 2011년, pp.834 - 850  

유동진 (대전대학교 컴퓨터응용기계설계공학과)

Abstract AI-Helper 아이콘AI-Helper

In this paper, a novel tissue engineering scaffold design method based on triply periodic minimal surface (TPMS) is proposed. After generating the hexahedral elements for a 3D anatomical shape using the distance field algorithm, the unit cell libraries composed of triply periodic minimal surfaces ar...

주제어

참고문헌 (40)

  1. Taylor, M. S., Daniels, A. U., Andriano, K. P. and Heller, J., "Six bioabsorbable polymers: in vitro acute toxicity of accumulated degradation products," J. Appl. Biomater., Vol. 5, No. 2, pp. 151-157, 1994. 

  2. Rubin, J. P. and Yaremchuk, M. J., "Complications and toxicities of implantable biomaterials used in facial reconstructive and aesthetic surgery: a comprehensive review of the literature," Plast. Reconstr. Surg., Vol. 100, No. 5, pp. 1336-1353, 1997. 

  3. Fisher, J. P., Holland, T. A., Dean, D., Engel, P. S. and Mikos, A. G., "Synthesis and properties of photocross-linked poly(propylene fumarate) scaffolds," J. Biomater. Sci. Polym. Ed., Vol. 12, No. 6, pp. 673-687, 2001. 

  4. Lin, A. S., Barrows, T. H., Cartmell, S. H. and Guldberg, R. E., "Microarchitectural and mechanical characterization of oriented porous polymer scaffolds," Biomaterials, Vol. 24, No. 3, pp. 481-489, 2003. 

  5. Cooke, M. N., Fisher, J. P., Dean, D., Rimnac, C. and Mikos, A. G., "Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth," J. Biomed. Mater. Res. B : Appl. Biomater., Vol. 64B, No. 2, pp. 65-69, 2003. 

  6. Rohner, D., Hutmacher, D. W., Cheng, T. K., Oberholzer, M. and Hammer, B., "In vivo efficacy of bone-marrow-coated polycaprolactone scaffolds for the reconstruction of orbital defects in the pig," J. Biomed. Mater. Res. B : Appl. Biomater., Vol. 66, No. 2, pp. 574-580, 2003. 

  7. Chu, T. M., Halloran, J. W., Hollister, S. J. and Feinberg, S. E., "Hydroxyapatite implants with designed internal architecture," J. Mater. Sci. Mater. Med., Vol. 12, No. 6, pp. 471-478, 2001. 

  8. Hollister, S. J., Maddox, R. D. and Taboas, J. M., "Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints," Biomaterials, Vol. 23, No. 20, pp. 4095-4103, 2002. 

  9. Karageorgiou, V. and Kaplan, D., "Porosity of 3D biomaterial scaffolds and osteogenesis," Biomaterials, Vol. 26, No. 27, pp. 5474-5491, 2005. 

  10. Hutmacher, D. W., "Scaffold design and fabrication technologies for engineering tissues - state of the art and future perspectives," J. Biomater. Sci. Polym. Ed., Vol. 12, No. 1, pp. 107-124, 2001. 

  11. Tsang, V. L. and Bhatia, S. N., "Three-dimensional tissue fabrication," Adv. Drug. Deliv. Rev., Vol. 56, No. 11, pp. 1635-1647, 2004. 

  12. Hutmacher, D. W., "Scaffolds in tissue engineering bone and cartilage," Biomaterials, Vol. 21, No. 24, pp. 2529-2543, 2000. 

  13. Yang, S., Leong, K. F., Du, Z. and Chua, C. K., "The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques," Tissue Eng., Vol. 8, No. 1, pp. 1-11, 2002. 

  14. Zein, I., Hutmacher, D. W., Tan, K. C. and Teoh, S. H., "Fused deposition modeling of novel scaffold architectures for tissue engineering applications," Biomaterials, Vol. 23, No. 4, pp. 1169-1185, 2002. 

  15. Landers, R., Hubner, U., Schmelzeisen, R. and Mulhaupt, R., "Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering," Biomaterials. Vol. 23, No. 23, pp. 4437-4447, 2002. 

  16. Vozzi, G., Flaim, C., Ahluwalia, A. and Bhatia, S., "Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition," Biomaterials, Vol. 24, No. 14, pp. 2533-2540, 2003. 

  17. Vozzi, G., "Microsyringe-based deposition of twodimensional and three-dimensional polymer scaffolds with a well-defined geometry for application to tissue engineering," Tissue Eng., Vol. 8, No. 6, pp. 1089-1098, 2002. 

  18. Landers, R., Pfister, A., Hubner, U., John, H., Schmelzeisen, R. and Mulhaupt, R., "Fabrication of soft tissue engineering scaffolds by means of rapid prototyping techniques," J. Mater. Sci., Vol. 37, No. 15, pp. 3107-3116, 2002. 

  19. Rimell, J. T. and Marquis, P. M., "Selective laser sintering of ultra high molecular weight polyethylene for clinical applications," J. Biomed. Mater. Res., Vol. 53, No. 4, pp. 414-420, 2000. 

  20. Hutmacher, D. W., Sittinger, M. and Risbud, M. V., "Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems," Trends in Biotechnology, Vol. 22, No. 7, pp. 354-362, 2004. 

  21. Hollister, S. J., "Porous scaffold design for tissue engineering," Nature Materials, Vol. 4, No. 7, pp. 518-524, 2005. 

  22. Gomez, C., Shokoufandeh, A. and Sun, W., "Unit- Cell Based Design and Modeling in Tissue Engineering Applications," Computer-Aided Design & Applications, Vol. 4, No. 5, pp. 649-659, 2007. 

  23. Starly, B., Lau, W., Bradbury, T. and Sun, W., "Internal architecture design and freeform fabrication of tissue replacement structures," Computer-Aided Design, Vol. 38, No. 2, pp. 115-124, 2006. 

  24. Adachi, T., Osako, Y., Tanaka, M., Hojo, M. and Hollister, S. J., "Framework for optimal design of porous scaffold microstructure by computational simulation of bone generation," Biomaterials, Vol. 27, No. 21, pp. 3964-3972, 2006. 

  25. Sun, W., Starly, B., Nam, J. and Darling, A., "Bio- CAD modeling and its applications in computer-aided tissue engineering," Computer-Aided Design, Vol. 37, No. 11, pp. 1097-1114, 2005. 

  26. Wettergreen, M. A., Bucklen, B. S., Starly, B., Yuksel, E., Sun, W. and Liebschner, M. A. K., "Creation of a unit block library of architectures for use in assembled scaffold engineering," Computer-Aided Design, Vol. 37, No. 11, pp. 1141-1149, 2005. 

  27. Tuan, H. S. and Hutmacher, D. W., "Application of micro CT and computation modeling in bone tissue engineering," Computer-Aided Design, Vol. 37, No.11, pp. 1151-1161, 2005. 

  28. Naing, M. W., Chua, C. K., Leong, K. F. and Wang, Y., "Fabrication of customized scaffolds using computer-aided design and rapid prototyping techniques," Rapid Prototyping Journal, Vol. 11, No. 4, pp. 249-259, 2005. 

  29. Leong, K. F., Chua, C. K., Sudarmadji, N. and Yeong, W. Y., "Engineering functionally graded tissue engineering scaffolds," Journal of the Mechanical Behavior of Biomedical Materials, Vol. 1, No. 2, pp. 140-152, 2008. 

  30. Sogutlu, S. and Koc, B., "Stochastic Modeling of Tissue Engineering Scaffolds with Varying Porosity Levels," Computer-Aided Design & Applications, Vol. 4, No. 5, pp. 661-670, 2007. 

  31. Cai, S. and Xi, J., "A control approach for pore size distribution in the bone scaffold based on the hexahedral mesh refinement," Computer-Aided Design, Vol. 40, No. 10-11, pp. 1040-1050, 2008. 

  32. Rajagopalan, S. and Robb, R. A., "Schwarz meets Schwann: Design and fabrication of biomorphic and durataxic tissue engineering scaffolds," Medical Image Analysis, Vol. 10, No. 5, pp. 693-712, 2006. 

  33. Melchels, F. P. W., Bertoldi, K., Gabbielli, R., Velders, A. H. and Feijen, J., "Mathematically defined tissue engineering scaffold architectures prepared by stereolithography," Biomaterials, Vol. 31, No. 27, pp. 6909-6916, 2010. 

  34. Yoo, D. J., "Computer-aided Porous Scaffold Design for Tissue Engineering Using Triply Periodic Minimal Surfaces," Int. J. Precis. Eng. Manuf., Vol. 12, No. 1, pp. 61-71, 2011. 

  35. Yoo, D. J., "Filling Holes in Large Polygon Models Using an Implicit Surface Scheme and the Domain Decomposition Method," Int. J. Precis. Eng. Manuf., Vol. 8, No. 1, pp. 3-10, 2007. 

  36. Yoo, D. J. and Kwon, H. H., "Shape Reconstruction, Shape Manipulation, and Direct Generation of Input Data from Point Clouds for Rapid Prototyping," Int. J. Precis. Eng. Manuf., Vol. 10, No. 1, pp. 103-113, 2009. 

  37. Yoo, D. J., "Three-dimensional Morphing of Similar Shapes Using a Template Mesh," Int. J. Precis. Eng. Manuf., Vol. 10, No. 1, pp. 55-66, 2009. 

  38. Yoo, D. J., "General 3D Offsetting of a Triangular Net Using an Implicit Function and the Distance Fields," Int. J. Precis. Eng. Manuf., Vol. 10, No. 4, pp. 131-142, 2009. 

  39. Lal, P. and Sun, W., "Computer modeling approach for microsphere-packed bone scaffold," Computer- Aided Design, Vol. 36, No. 5, pp. 487-497, 2004. 

  40. Yoo, D. J., "Three-dimensional Human Body Model Reconstruction and Manufacturing from CT Medical Image Data Using a Heterogeneous Implicit Solid Based Approach," Int. J. Precis. Eng. Manuf., Vol. 12, No. 2, pp. 293-301, 2011. 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로