$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 스터럽 절단 탄소섬유판 표면매립공법의 휨 보강 성능 평가
Assessment of Flexural Strengthening Behavior Using the Stirrup-Cutting Near Surface Mounted(CNSM) CFRP strip 원문보기

한국구조물진단유지관리공학회 논문집 = Journal of the Korea Institute for Structural Maintenance and Inspection, v.16 no.6, 2012년, pp.102 - 112  

문도영 (경성대학교 토목공학과) ,  오홍섭 (경남과학기술대학교 토목공학과) ,  지광습 (고려대학교 토목공학과)

초록

최근 탄소섬유판 매립공법의 콘크리트 구조물의 보강에 적용되고 있다. 그러나 탄소섬유판 표면매립공법은 피복부 콘크리트의 강도 부족과 높이 부족 등으로 인하여 그 적용의 제한이 발생하기도 한다. 본 연구에서는 이와 같은 이유로 인하여 전단 스터럽을 절단하고 탄소섬유판을 주철근의 위치에 표면매립 보강하는 공법에 대하여 고찰하였다. 일반적인 표면매립공법과 스터럽을 절단하고 표면매립공법을 적용한 보에 대한 휨 실험을 수행하였으며, 결과를 서로 비교하였다. 탄소섬유판의 길이를 실험변수로 하였다. 실험결과에 따르면, 전단 스터럽을 절단한 보강 보의 휨거동은 일반적인 표면매립공법이 적용된 실험체의 거동과 유사한 전형적인 휨 거동을 나타내었으며, 스터럽의 절단으로 인한 구조거동상의 문제는 발생하지 않았다. 따라서, 일반적인 현장 여건에 의하여 탄소섬유판의 적용이 곤란한 경우에는 스터럽을 절단하는 본 공법의 적용이 가능한 것으로 판단된다.

Abstract AI-Helper 아이콘AI-Helper

Recently, the near surface mounted (NSM) FRP strengthening technique has been actively applied to deteriorated concrete structures for rehabilitation purposes. However, the use of this conventional NSM technique could be restricted due to the insufficient height or strength of the concrete cover. In...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • In their study, it was reported that the composite action between the embedded CFRP strip and the concrete was partially lost by flexural cracks at midspan and that the ultimate load and corresponding deflection could be significantly reduced by the flexural cracks, particularly in the beams with an embedment length shorter than 68% of the net span length. In addition, a model was presented for the calculation of the development length of the NSM CFRP strips as shown in the following equation (2) and was evaluated by a parametric study. The maximum critical shear stress is also given by equation (3).
  • A more feasible method should therefore be considered to enhance the integrity of the rehabilitation system with NSM. In this study, an alternative method is attempted, whereby CFRP strips are inserted at a deeper location. However, this alternative method requires partial cutting of the existing stirrups with an enclosed shape, which interrupts the installation of CFRP strips.
  • In this study, the stirrup-Cutting Near Surface Mounted (CNSM) CFRP strip technique, where the CFRP strip is installed at a deeper level than the NSM technique, was evaluated through flexural tests and the results were compared with the conventional NSM technique. The number and the embedment length of the CFRP strip were considered as a test variables in order to clearly observe the effect of the partial cutting of stirrups on the failure mode and load carrying capacity between both strengthening techniques.
  • In addition, more convenient loading work was accomplished with the configuration. The beams were instrumented with a linear variable differential transducer (LVDT) at midspan and at 675mm from each support in order to measure the deflection. At midspan, a strain gauge was glued to the top fiber of the concrete in the compression zone using an epoxy resin after carefully sandblasting the concrete.
  • The minimum embedment length of the CFRP strips of the test beam was set at 864mm, which corresponds to 32% of the net span length, in order to prevent the IC debonding failure. The embedment length of the CFRP strip in beams was varied in order to investigate the change in the failure mode and moment capacity of a beam strengthened with NSM and CNSM CFRP strips. The considered embedment lengths were 32%, 48%, 70%, 80%, and 90% of the net span length of the beam.
  • Nevertheless, the predicted moment capacity concurred with the experimental results. Therefore, the ACI formulation and the relationship of the effective strain of the NSM CFRP strip can be utilized for the preliminary analysis and for the experiment of flexural member strengthened with CNSM technique.

대상 데이터

  • CFRP strips produced by a Korean manufacturer were used. The width and thickness of each strip was 25mm and 1.
  • Table 1 shows the test specimen. Fourteen beam specimens were cast for this experimental program, including two non-strengthened beams, which were used as control specimens. Stirrups with a closed shape were distributed at 100mm spacing along the beam axis over the entire length.
  • Normal weight ready-mixed concrete was used for the specimens. The average compressive strength of concrete was 30 MPa as evaluated by tests on three cylindrical 100 mm high specimens.
  • The considered embedment lengths were 32%, 48%, 70%, 80%, and 90% of the net span length of the beam. The names of specimens comprise the name of the strengthening technique, that of NSM or CNSM, and the number of the CFRP strip, that of 1 or 2, and the embedment length of the CFRP strip, that of 32, 48, 70, 80, or 96, as listed in Table 1.
본문요약 정보가 도움이 되었나요?

참고문헌 (18)

  1. ACI committee 440. 2R., Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures, American Concrete Institute, 24, 2002. 

  2. American Concrete Institute, Building code and commentary, ACI 318-08, Detroit, 155, 2008. 

  3. Barros JAO, Dias SJE, Lima JLT., Efficacy of CFRPbased techniques for the flexural and shear strengthening of concrete beams, J Cem Concr Compos, 29, 2007, 203-217. 

  4. Barros JAO, Ferreira DRSM, Fortes AS, Dias SJE., Assessing the effectiveness of embedding CFRP laminates in the near surface for structural strengthening, Constr Build Mater, 20, 2006, 478-491. 

  5. Bonaldo E, Barros JAO, Lourenco PB., Efficient strengthening technique to increase the flexural resistance of existing RC slabs, J Compos Constr vol. 12, No. 2, 2008, 149-159. 

  6. Derias M, El-Hacha R., Bond behavior of FRP in structures: state-of-the-art review, Proc., 8th Int. Symp. FRPRPs-8, Patras, Greece, 2007. 

  7. El-Hacha R, Filho JNS, Melo GS, Rizkalla S., Effectiveness of near surface mounted FRP reinforcement for flexural strengthening of reinforced concrete beams, Proc., 4th Int.ConfACMBS, Calgary, Canada, 2004. 

  8. Hassan T, Rizkalla S., Investigation of bond in concrete structures strengthened with near surface mounted carbon fiber reinforced polymer strips, J Compos Constr, vol. 7, No. 3, 2003, 248-257. 

  9. Hassan TK, Rizkalla SH., Bond mechanism of NSM FRP bars for Flexural Strengthening of concrete structures, ACI Struct J, vol. 101, No. 6, 2004, 830-839. 

  10. Kang J, Park Y, Park J, You Y, Jung W., Analytical evaluation of RC beams strengthened with near surface mounted CFRP laminates, Proc., 7th Int. Symp. FRPRPs-7, Kansas City, USA, 2005, 779-794. 

  11. Kishi N, Mikami H, Kurihashi Y, Sawada S., Flexural behavior of RC beams reinforced with NSM AFRP rods, Proc., Int. Symp. on Bond Behavior of FRP in Structures (BBFS2005), Hong Kong, 2005, 337-342. 

  12. Korea Industrial Standards, The pieces for tension test for metallic materials, KS B 0801, Korea(in Korean), 1981. 

  13. Liu IST, Oehlers DJ, Seracino R., Tests on the ductility of reinforced concrete beams retrofitted with FRP and steel near-surface mounted plates, J Compos Constr, vol. 10, No. 2, 2006, 106-114. 

  14. Rizkalla S, Hassan T, Hassan N., Design recommendations for the use of FRP for reinforcement and strengthening of concrete structures, Prog Struct Engng Mater, 5, 2003, 16-28. 

  15. Seo, S., Choi. K., Kwon. Y. Retrofit Capacity of Near- Surface-Mounted RC Beam by using FRP Plate, Journal of KSMI, vol. 16, No. 1, 18-26(in Korean) 

  16. Seracino R, Saifulnaz MRR, Oehlers DJ., Generic debonding resistance of EB and NSM plate-to-concrete joints, J Compos Constr, vol. 11, No. 1, 2007, 62-70. 

  17. Teng JG, De Lorenzis L, Wang B, Li R, Wong TN, Lam L., Debonding failures of RC beams strengthened with near surface mounted CFRP strips, J Compos Constr, vol. 10, No. 2, 2006, 92-105. 

  18. Yoon J., Han J. Cho D., Park S. Crack and Debonding Donitoring of RC Beams Strengthened with CFRP Plates, Journal of KSMI, vol. 15, No. 4, 185-192(in Korean). 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로