$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

초록
AI-Helper 아이콘AI-Helper

논은 지역이나 토양, 기후 특성, 오염원 종류, 관개 및 시비 등의 경작방법에 따라 배출 양상이 다양하다. 특히, 시비방법 개선, 효율적인 물관리 등 영농방법 개선을 통한 비점부하 저감이 중요하다. 본 연구에서는 담수논을 대상으로 물꼬높이, 시비량, 관개수 수질에 따른 배출부하량 저감효과를 평가하기 위해, 시험포장의 물수지 및 물질수지 분석자료를 이용하여 CREAMS-PADDY 모형을 보정과 검정을 하고, 영농관리 시나리오를 적용하여 그 결과를 평가하였다. 영농관리 시나리오는 선행연구를 조사하여 배출부하량 저감을 만족하는 동시에 벼의 수확량 저하를 초래하지 않도록 4개의 시나리오로 개발하였고, 대조군은 관행농업을 반영하여 구성하였다. CREAMS-PADDY 모형과 HOMWRS 모형을 연계하고, 과거 기상자료를 이용하여 1981~2010년 영농기의 배출부하량 모의가 가능하도록 모형을 구축하였다. 모형의 보정 및 검정을 위하여 서울대학교 이동저수지 관개논 시험포장에의 물수지 및 물질수지 분석 자료를 이용하였고, 보정 결과 논물 총질소 및 총인의 결정계수는 0.95, 0.84, 모형의 효율지수는 0.95, 0.73으로, 검정 결과 논물 총질소 및 총인의 결정계수는 0.97, 0.85, 모형의 효율지수는 0.91, 0.84로 비교적 높게 나타났다. 영농관리 시나리오 적용 결과 중간낙수 이후 물꼬를 50 mm 증가시켰을 때 배출부하량은 대조군 대비 T-N 1~34%, T-P 5~21% 저감되는 것으로 나타났고, 100 mm 증가시켰을 때 대조군 대비 T-N 5~62%, T-P 8~37% 저감되는 것으로 나타났다. 관행시비량에서 표준시비량으로 시비량을 삭감시 배출부하량은 대조군 대비 T-N 0~16%, T-P 0~9% 저감되는 것으로 나타났으며, 배출부하량 저감양상은 시비직후 강우의 발생유무에 따라 크게 달라지는 것으로 나타났다. 관개수 수질을 호소수 수질환경기준인 4등급을 초과하는 수준으로 관개하는 경우 배출부하량은 대조군 대비 T-N 9~65%, T-P는 9~47% 증가하는 것으로 나타났다. 영양물질의 농도가 높은 관개수가 유입될 경우 논은 수질을 정화하는 경향을 보였다. 시나리오를 종합하면 영농초기의 물꼬높이를 낮게 유지하고, 중간낙수 이후 물꼬를 높게 유지하며, 비료는 강우가 발생하지 않는 시기에 표준시비량으로 시비하고, 호소수 수질환경기준인 4등급을 만족하는 관개수를 이용하였을 경우 논에서의 비점오염 관리에 가장 효과적인 것으로 나타났다. 하지만 고농도의 영양물질이 함유된 관개수를 농업용수로 이용할 경우 수계 전체의 배출부하량에 저감에 있어 효과적인 것으로 나타났다. 본 연구는 현장 실험 이전의 기초 자료로 사용될 수 있을 것으로 사료된다.

Abstract AI-Helper 아이콘AI-Helper

BACKGROUND: For Non-Point Source(NPS) loads reduction, pollutant loads need to be quantified for major farming methods. The objective of this study was to evaluate impacts of farming methods on NPS pollutant loads from a paddy rice field during the growing season. METHODS AND RESULTS: The height of ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 연구는 담수논을 대상으로 영농방법에 따른 배출부하량 영향을 평가하기 위하여, 배출부하량 저감을 위한 영농관리 시나리오를 구성하였고, 과거 배출부하량 모의가 가능하도록 CREAMS-PADDY 모형과 HOMWRS 모형을 연계 모의하여 시나리오별 비점부하를 비교하고 평가하였다.
  • 본 연구에서는 논에서의 영농방법에 따른 배출부하량 저감효과를 평가하기 위하여 물관리 인자로 물꼬 높이, 논물의 농도와 관련된 인자로 시비량과 관개수의 수질의 변화에 따라 시나리오를 구성하였다. Table 1은 본 연구에서 설정한 영농관리 시나리오를 나타내고 있다.
  • 특히, 시비방법 개선, 효율적인 물관리 등 영농방법 개선을 통한 비점부하 저감이 중요하다. 본 연구에서는 담수논을 대상으로 물꼬 높이, 시비량, 관개수 수질에 따른 배출부하량 저감효과를 평가하기 위해, 시험포장의 물수지 및 물질수지 분석자료를 이용하여 CREAMS-PADDY 모형을 보정과 검정을 하고, 영농관리 시나리오를 적용하여 그 결과를 평가하였다. 영농관리 시나리오는 선행연구를 조사하여 배출부하량 저감을 만족하는 동시에 벼의 수확량 저하를 초래하지 않도록 4개의 시나리오로 개발하였고, 대조군은 관행농업을 반영하여 구성하였다.
  • 5%의 강우를 저류할 수 있는 것으로 나타내고 있다. 본 연구에서는 물꼬높이 증가에 따라 강우 저류에 따른 배출부하량 저감 효과를 비교하고자 하였다. 중간낙수 이전에는 관행 물꼬 높이인 100 mm을 유지하여 중간낙수(Midsummer drainage)시 강제배수량이 크지 않도록 하였고, 중간낙수 이후 150 mm로 유지하여 관리하는 경우(Scenario Ⅰ), 중간낙수 이후 200 mm로 유지하여 관리하는 경우(Scenario Ⅱ)로 구분하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
담수 논의 비점오염의 주원인은 무엇인가? 비점오염의 주원인은 강수에 의한 유출이기 때문에 배출 부하량은 강우량에 따라 변동이 크다. 따라서 영농방법에 따른 배출부하량 저감효과를 정량적으로 평가하기 위해서는 강우량의 변동에 따른 영향을 장기적으로 고려해야 한다.
수질 비점오염원의 주요 요인은 무엇인가? 비점오염원의 주요 요인은 도로, 대지, 농촌의 토지계 등주로 토지이용에 기반하는 오염원이 대부분을 차지하며, 이들은 전체 수체 유입 오염부하의 약 30%에 해당하고 그 기여율 또한 지속적인 증가 추세에 있다. 특히, 논은 농업용수의 80% 이상이 사용되는 만큼 수계에 직접적으로 미칠 수 있는 영향이 크다.
담수 논 지역의 배출부하량 저감효과를 위해 어떤 개선이 이루어져야 하는가? 논은 지역이나 토양, 기후 특성, 오염원 종류, 관개 및 시비 등의 경작방법에 따라 배출 양상이 다양하다. 특히, 시비방법 개선, 효율적인 물관리 등 영농방법 개선을 통한 비점부하 저감이 중요하다. 본 연구에서는 담수논을 대상으로 물꼬 높이, 시비량, 관개수 수질에 따른 배출부하량 저감효과를 평가하기 위해, 시험포장의 물수지 및 물질수지 분석자료를 이용하여 CREAMS-PADDY 모형을 보정과 검정을 하고, 영농관리 시나리오를 적용하여 그 결과를 평가하였다.
질의응답 정보가 도움이 되었나요?

참고문헌 (28)

  1. Anbumozhi, V., Yamaji, E., Tabuchi, T., 1998. Rice crop growth and yield as influenced by changes in ponding water depth, water regime and fertigation level, Agri. Water Manage. 37, 241-253. 

  2. Chin, Y. M., Park, S. W., Kim, S. M., Kang, M. S., Kang, M. G., 2002. Nutrient loads estimation at paddy field using CREAMS-PADDY model, J. Korean Sciety. Rural Plan. 8(1), 60-68. 

  3. Cho, J. Y., Han, K. W., Choi, J. K., Kim, Y. J., Yoon, K. S., 2002. N and P losses from a paddy field plot in central Korea, Soil Sci. Plant Nutr. 48, 301-306. 

  4. Choi, J. K., Son, J. G., Yoon, K. S., Lee, H. J., Kim, Y. J., 2012. Runoff characteristics in paddy fields using cow manure compost fertilizer, J. Korean Sciety. Agri. Eng. 54(3), 29-36. 

  5. Choi, J. S., Won, J. G., Ahn, D. J., Park, S. G., Lee, S. P., 2004. Growth and Yield of Rice by Field Water Management for Water-Saving Irrigation, Korean J. Crop Sci. 49(6), 441-446. 

  6. David, R. L., Gregory, M. J., 1999. Evaluating the use of "goodness-of-fit" measures in hydrologic and hydroclimate model validation, Water Resour. Res. 35(1), 233-241. 

  7. Han, K. H., 2011. Characteristics of non-point Sources pollutant loads at paddy plot located at the valley watershed during irrigation periods, Koran National Commi. Irri. and Drain. 18(1), 94-102. 

  8. Hwang, H. S., Yoon, C. G., Jeon, J. H., Kim, B. H., 2002. Water and nutrient mass balance in paddy field with groundwater irrigation in low-rainfall year, J. Korean Sciety. Agri. 44(4), 39-50. 

  9. Jang, T. I., Lee, S. B., Seong, C. H., Lee H. P., Park, S. W., 2010. Safe application of reclaimed water reuse for agriculture in Korea, Paddy Water Environ. 2010(8), 227-233 

  10. Jeon, J. H., Yoon, C. G., Ham, J. H., Jung, K. W., 2004. Model development for surface drainage loadings estimates from paddy rice fields, Paddy Water Environ. 3(2), 93-101. 

  11. Jeon, J. H., Yoon, C. G., Hwang, H. S., Yoon, K. S., 2003. Water quality model development for loadings estimates from paddy fields, Korean J. Limnol. 36(3), 344-355. 

  12. Jung, K. W., Kim, H. K., Jang, T. I., Kim, S. M., Park, S. W., 2011. Assessing grain quality properties of reclaimed wastewater irrigation, J. Agri. Life. Sci. 44(6), 183-189. 

  13. Kang, J. R., Kim, J. T., Beg, L. Y., Kim, J. I., 2005. Effect of Nitrogen Fertilizer Rates on Rice Quality in Mid-mountainous Area, Korean J. Crop Sci. 50(S), 37-40. 

  14. Kang, M. S., 2010. Development of improved farming methods to reduce agricultural non-point source pollution, M. Korean Sciety. Agri. Eng. 52(4), 40-50. 

  15. Kang, Y. S., Lee, J. H., Kim, J. I., Lee, J. S., 1997. Influence of Silicate Application on Rice Grain Quality, Korean J. Crop Sci. 42(2), 800-804. 

  16. Kim, J. I., Choi, H. C., Kim K. H., Ahn, Jong. Kuk., Park, N. B., Park, D. S., Kim, C. S., Lee, J. Y., Kim, J. K., 2009. Varietal response to grain quality and palatability of cooked rice Influenced by different nitrogen applications, Korean J. Crop Sci. 54(1), 13-23. 

  17. Lee, T. H., 2011, Introduction of HOMWRS : Hydrological Operation Model for Water Resources System, M. Korea Water Res. Assoc. 44(7), 88-91. 

  18. Lee, Y. H., Sonn, Y. K., Lee, S. T., Heo, J. Y., Kim, M.K., Kim, E. S., Song, W.D., Zhang, Y. S., Jeon, W. T., Oh, Y. S., 2012. Topographical chemical properties of paddy soils in Gyeongnam province, Korean J. Soil Sci. Fert. 45(2), 143-148. 

  19. Mills, H. J., Benton, J., 1979. Nutrient deficiencies and toxicities in plants: Nitrogen, J. of plant nutri. 1(2), 101-122. 

  20. Mishra, A., Ghorai, A. K., Singh, S. R., 1998. Rainwater, soil and nutrient conservation in rainfed rice lands in Eastern India, Agri. Water Manage. 38(1), 45-57. 

  21. Nash J. E., Sutcliffe, J. V., 1970. River flow forecasting through conceptual models part I-A discussion of principles, J. Hydrology 10, 282-290. 

  22. Seo, C. S., Park, S. W., Im, S. J., Yoon, K. S., Kim, S. M., Kang, M. S., 2002. Development of CREAMS- PADDY Model for Simulating Pollutants from Irrigated Paddies, J. Korean Sciety. Agri. Eng. 44(3), 146-156. 

  23. Seong, C. H., Kim, S. J., Kim, S. M., Kim, S. M., 2011. Analysis of Wastewater Reuse Effect on Field-Scale Water Quality, J. Korean Sciety. Agri. 53(4), 59-65. 

  24. Sohn, S. H., Chung, S. O., 2002. Effects of ponding depth treatment on water balance in paddy fields, J. Korean Sciety. Agri. Eng. 44(2), 67-74. 

  25. Wischmeier W. H., Smith, D. D., 1978. Predicting rainfall erosion losses-A guide to conservation planning, USDA agriculture handbook No. 537. United States Department of Agriculture (USDA), Agricultural Research Service, Washington. 

  26. Yoo, S. H., Choi, J. Y., Jang, M. W., 2006. Estimation of Paddy Rice Crop Coefficients for FAO Penmann- Monteith and Modified Penmann Method, J. Korean Sciety. Agri. 48(1), 13-23. 

  27. Yoon, C. G., Hwang, H. S., Jung, K. W., Jeon, J. H., 2003. Effects of Ponded-Water Depth and Reclaimed Wastewater Irrigation on Paddy Rice Culture, J. Korean Sciety. Agri. 45(4), 55-65. 

  28. Won, J. G., Choi, C. D., Lee, W. H., Kim, C. R., Lee, S. C., 1997. Influence of deep flooding on rice growth and yield in dry-seeded paddy field, Korean J. Crop Sci. 42(2), 166-172. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로