$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Multiobjective Genetic Algorithm for Scheduling Problems in Manufacturing Systems 원문보기

Industrial engineering & management systems : an international journal, v.11 no.4, 2012년, pp.310 - 330  

Gen, Mitsuo (Fuzzy Logic Systems Institute (FLSI), National Ting Hua University) ,  Lin, Lin (Fuzzy Logic Systems Institute (FLSI), Dalian University of Technology)

Abstract AI-Helper 아이콘AI-Helper

Scheduling is an important tool for a manufacturing system, where it can have a major impact on the productivity of a production process. In manufacturing systems, the purpose of scheduling is to minimize the production time and costs, by assigning a production facility when to make, with which staf...

주제어

참고문헌 (75)

  1. Bidot, J., Vidal, T., Laborie, P., Beck, J. C. (2009), A theoretic and practical framework for scheduling in a stochastic environment, Journal of Scheduling, 12(3), 315-344. 

  2. Brandimarte, P. (1993), Routing and scheduling in a flexible job shop by tabu search, Annals of Operations Research, 41(3), 157-183. 

  3. Cheng, R., Gen, M., and Tsujimura, Y. (1996), A tutorial survey of job-shop scheduling problems using genetic algorithms. I: representation, Computers and Industrial Engineering, 30(4), 983-997. 

  4. Cheng, R., Gen, M., and Tsujimura, Y. (1999), A tutorial survey of job-shop scheduling problems using genetic algorithms, part II: hybrid genetic search strategies, Computers and Industrial Engineering, 36(2), 343-364. 

  5. Dahal, K. P., Tan, K. C., and Cowling, P. I. (2007), Evolutionary Scheduling, Springer, London, UK. 

  6. Dauzere-Peres, S. and Paulli, J. (1997), An integrated approach for modeling and solving the general multiprocessor job-shop scheduling problem using tabu search, Annals of Operations Research, 70(1), 281-306. 

  7. Deb, K. (1989), Genetic algorithms in multimodal function optimization, MS Thesis, University of Alabama, Tuscaloosa, AL. 

  8. Deb, K. (2001), Multi-Objective Optimization Using Evolutionary Algorithms, John Wiley and Sons, New York, NY. 

  9. Deb, K. (2005), Optimization for Engineering Design: Algorithms and Examples, Prentice-Hall of India Private Ltd., New Delhi, India. 

  10. Floudas, C. A. and Lin, X. (2004), Continuous-time versus discrete-time approaches for scheduling of chemical processes: a review, Computers and Chemical Engineering, 28(11), 2109-2129. 

  11. Floudas, C. A. and Lin, X. (2005), Mixed integer linear programming in process scheduling: modeling, algorithms, and applications, Annals of Operations Research, 139(1), 131-162. 

  12. Framinan, J. M. and Ruiz, R. (2010), Architecture of manufacturing scheduling systems: Literature review and an integrated proposal, European Journal of Operational Research, 205(2), 237-246. 

  13. Gao, J., Gen, M., and Sun, L. (2006), Scheduling jobs and maintenances in flexible job shop with a hybrid genetic algorithm, Journal of Intelligent Manufacturing, 17(4), 493-507. 

  14. Garey, M. R., Johnson, D. S., and Sethi, R. (1976), The complexity of flowshop and jobshop scheduling, Mathematics of Operations Research, 1(2), 117- 129. 

  15. Geiger, M. J. (2011), Decision support for multi-objective flow shop scheduling by the Pareto iterated local search methodology, Computers and Industrial Engineering, 61(3), 805-812. 

  16. Gen, M. and Cheng, R. (2000), Genetic Algorithms and Engineering Optimization, Wiley, New York, NY. 

  17. Gen, M., Cheng, R., and Lin, L. (2008), Network Models and Optimization: Multiobjective Genetic Algorithm Approach, Springer, London, UK. 

  18. Gen, M., Gao, J., and Lin, L. (2009), Multistage-based genetic algorithm for flexible job-shop scheduling problem, Intelligent and Evolutionary Systems, Studies in Computational Intelligence, 187, 183-196. 

  19. Gen, M., Zhang, W., and Lin, L. (2009), Survey of evolutionary algorithms in advanced planning and scheduling, Journal of the Korean Institute of Industrial Engineering, 35(1), 15-39. 

  20. Goncalves, J. F., de Magalhaes Mendes, J. J., and Resende, M. G. C. (2005), A hybrid genetic algorithm for the job shop scheduling problem, European Journal of Operational Research, 167(1), 77-95. 

  21. Hwang, C. L. and Yoon, K. (1981), Multiple Attribute Decision Making: Methods and Applications, Springer, Berlin, Germany. 

  22. Hwang, H., Moon, S., and Gen, M. (2002), An integrated model for the design of end-of-aisle order picking system and the determination of unit load sizes of AGVs, Computers and Industrial Engineering, 42(2-4), 249-258. 

  23. Ishibuchi, H. and Murata, T. (1998), A multi-objective genetic local search algorithm and its application to flowshop scheduling, IEEE Transactions on Systems, Man, and Cybernetics Part C, 28(3), 392-403. 

  24. Kacem, I., Hammadi, S., and Borne, P. (2002), Approach by localization and multiobjective evolutionary optimization for flexible job-shop scheduling problems, IEEE Transactions on Systems, Man, and Cybernetics Part C, 32(1), 1-13. 

  25. Kacem, I., Hammadi, S., and Borne, P. (2002), Paretooptimality approach for flexible job-shop scheduling problems: hybridization of evolutionary algorithms and fuzzy logic, Mathematics and Computers in Simulation, 60(3-5), 245-276. 

  26. Kim, D. B. and Hwang, H. (2001), A dispatching algorithm for multiple-load AGVs using a fuzzy decision- making method in a job shop environment, Engineering Optimization, 33(5), 523-547. 

  27. Kim, S. H. and Hwang, H. (1999), An adaptive dispatching algorithm for automated guided vehicles based on an evolutionary process, International Journal of Production Economics, 61-62, 465-472. 

  28. Le-Ahn, T. and De Koster, M. B. M. (2006), A review of design and control of automated guided vehicle systems, European Journal of Operational Research, 171(1), 1-23. 

  29. Li, L. and Huo, J. Z. (2009), Multi-objective flexible job-shop scheduling problem in steel tubes production, Systems Engineering-Theory and Practice, 29 (8), 117-126. 

  30. Li, X., Gao, L., and Li, W. (2012), Application of game theory based hybrid algorithm for multi-objective integrated process planning and scheduling, Expert Systems with Applications, 39(1), 288-297. 

  31. Li, X., Zhang, C., Gao, L., Li, W., and Shao, X. (2010), An agent-based approach for integrated process planning and scheduling, Expert Systems with Applications, 37(2), 1256-1264. 

  32. Lim, J. K. (2004), Study on guide path design and path planning in automated guided vehicle system, PhD Thesis, Waseda University, Tokyo, Japan. 

  33. Lin, L. and Gen, M. (2008), Auto-tuning strategy for evolutionary algorithms: balancing between exploration and exploitation, Soft Computing, 13(2), 157- 168. 

  34. Lin, L., Hao, X. C., Gen, M., and Jo, B. J. (2012), Network modeling and evolutionary optimization for scheduling in manufacturing, Journal of Intelligent Manufacturing, 23(6), 2237-2253. 

  35. Lin, L., Liang, Y., Gen, M., and Chien, C. F. (2012), A hybrid evolutionary algorithm for FMS optimization with AGV dispatching, Proceedings of the 42th International Conference on Computers and Industrial Engineering, Cape Town, South Africa. 

  36. Lopez-Ortega, O. and Moramay, R. (2005), A STEPbased manufacturing information system to share flexible manufacturing resources data, Journal of Intelligent Manufacturing, 16(3), 287-301. 

  37. Moon, C., Kim, J. S., and Gen, M. (2004), Advanced planning and scheduling based on precedence and resource constraints for e-plant chains, International Journal of Production Research, 42(15), 2941- 2955. 

  38. Moon, S. W. and Hwang, H. (1999), Determination of unit load sizes of AGV in multi-product multi-line assembly production systems, International Journal of Production Research, 37(15), 3565-3581. 

  39. Najid, N. M., Dauzere-Peres, S., and Zaidat, A. (2002), A modified simulated annealing method for flexible job shop scheduling problem, Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, Hammamet, Tunisia. 

  40. Naso, D. and Turchiano, B. (2005), Multicriteria metaheuristics for AGV dispatching control based on computational intelligence, IEEE Transactions on Systems, Man, and Cybernetics Part B, 35(2), 208- 226. 

  41. Nowicki, E. and Smutnicki, C. (2005), An advanced Tabu search algorithm for the job shop problem, Journal of Scheduling, 8(2), 145-159. 

  42. Pareto, V. (1906), Manuale di economia politica, Societa Editrice, Milano, Italy. 

  43. Pinedo, M. (2002), Scheduling: Theory, Algorithms, and Systems, Prentice-Hall, Upper Saddle, NJ. 

  44. Proth, J. M., Sauer, N., and Xie, X. (1997), Optimization of the number of transportation devices in a flexible manufacturing system using event graphs, IEEE Transactions on Industrial Electronics, 44(3), 298-306. 

  45. Schaffer, J. D. (1985), Multiple objective optimization with vector evaluated genetic algorithms, Proceedings of the 1st International Conference on Genetic Algorithms, Pittsburgh, PA, 93-100. 

  46. Shao, X., Li, X., Gao, L., and Zhang, G. (2009), Integration of process planning and scheduling: a modified genetic algorithm-based approach, Computers and Operations Research, 36(6), 2082-2096. 

  47. Srinivas, N. and Deb, K. (1995), Multiobjective optimiza- tion using nondominated sorting in genetic algorithms, Journal of Evolutionary Computation, 2(3), 221-248. 

  48. Steuer, R. E. (1986), Multiple Criteria Optimization: Theory, Computation, and Application, Wiley, New York, NY. 

  49. Tamaki, H., Kita, H., and Kobayashi, S. (1996), Multiobjective optimization by genetic algorithms: a review, Proceedings of IEEE International Conference on Evolutionary Computation, Nagoya, Japan, 517-522. 

  50. Tanev, I. T., Uozumi, T., and Morotome, Y. (2004), Hybrid evolutionary algorithm-based real-world flexible job shop scheduling problem: application service provider approach, Applied Soft Computing, 5(1), 87-100. 

  51. Tavakkoli-Moghaddam, R., Jolai, F., Vaziri, F., Ahmed, P. K., and Azaron, A. (2005), A hybrid method for solving stochastic job shop scheduling problems, Applied Mathematics and Computation, 170(1), 185-206. 

  52. Ulusoy, G., Sivrikaya-Serifoglu, F., and Bilge, U. (1997), A genetic algorithm approach to the simultaneous scheduling of machines and automated guided vehicles, Computers and Operations Research, 24(4), 335-351. 

  53. Verderame, P. M. and Floudas, C. A. (2008), Integrated operational planning and medium-term scheduling for large-scale industrial batch plants, Industrial and Engineering Chemistry Research, 47(14), 4845-4860. 

  54. Vis, I. F. A. (2006), Survey of research in the design and control of automated guided vehicle systems, European Journal of Operational Research, 170(3), 677- 709. 

  55. Wang, S. J., Xi, L. F., and Zhou, B. H. (2008), FBSenhanced agent-based dynamic scheduling in FMS, Engineering Applications of Artificial Intelligence, 21(4), 644-657. 

  56. Wu, Z. and Weng, M. X. (2005), Multiagent scheduling method with earliness and tardiness objectives in flexible job shops, IEEE Transactions on Systems, Man, and Cybernetics Part B, 35(2), 293-301. 

  57. Xia, W. and Wu, Z. (2005), An effective hybrid optimization approach for multi-objective flexible jobshop scheduling problems, Computers and Industrial Engineering, 48(2), 409-425. 

  58. Xiang, W. and Lee, H. P. (2008), Ant colony intelligence in multi-agent dynamic manufacturing scheduling, Engineering Applications of Artificial Intelligence, 21(1), 73-85. 

  59. Yang, J. B. (2001), GA-based discrete dynamic programming approach for scheduling in FMS environments, IEEE Transactions on Systems, Man, and Cybernetics Part B, 31(5), 824-835. 

  60. Zhang, W. and Gen, M. (2010), Process planning and scheduling in distributed manufacturing system using multiobjective genetic algorithm, IEEE Transactions on Electrical and Electronic Engineering, 5(1), 62-72. 

  61. Zhang, W., Lin, L., Gen, M., and Chien, C. F. (2012), Hybrid sampling strategy-based multiobjective evolutionary algorithm, Procedia Computer Science, 12, 96-101. 

  62. Zitzler, E. and Thiele, L. (1999), Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach, IEEE Transactions on Evolutionary Computation, 3(4), 257-271. 

  63. Zitzler, E., Laumanns, M., and Thiele, L. (2001), SPEA2: Improving the Strength Pareto Evolutionary Algorithm, TIK-Report 103, Computer Engineering and Networks Laboratory (TIK), Zurich, Switzerland. 

  64. Bean, J. C. (1994), Genetic algorithms and random keys for sequencing and optimization, INFORMS Journal on Computing, 6(2), 154-160. 

  65. Ding, L., Yue, Y., Ahmet, K., Jackson, M., and Parkin, R. (2005), Global optimization of a feature-based process sequence using GA and ANN techniques, International Journal of Production Research, 43 (15), 3247-3272. 

  66. Gen, M. and Zhang, H. (2006), Effective designing chromosome for optimizing advanced planning and scheduling. In: Dagli, C. H., Buczak, A. L., Enke, D. L., Embrechts, M., and Ersoy, O. (ed.), Intelligent Engineering Systems through Artificial Neural Network, ASME Press, New York, NY, 61-66. 

  67. Gen, M., Lin, L., and Zhang, H. (2009), Evolutionary techniques for optimization problems in integrated manufacturing system: State-of-the-art-survey, Computers and Industrial Engineering, 56(3), 779-808. 

  68. Guo, Y. W., Li, W. D., Mileham, A. R., and Owen, G. W. (2009), Applications of particle swarm optimisation in integrated process planning and scheduling, Robotics and Computer-Integrated Manufacturing, 25(2), 280-288. 

  69. Guo, Y., Li, W., Mileham, A. R., and Owen, G. W. (2009), Optimisation of integrated process planning and scheduling using a particle swarm optimisation approach, International Journal of Production Research, 47(14), 3775-3796. 

  70. Kim, Y. K., Kim, J. Y., and Shin, K. S. (2007), An asymmetric multileveled symbiotic evolutionary algorithm for integrated FMS scheduling, Journal of Intelligent Manufacturing, 18(6), 631-645. 

  71. Lee, C. Y. and Chen, Z. L. (2001), Machine scheduling with transportation considerations, Journal of Scheduling, 4(1), 3-24. 

  72. Li, W. D. and McMahon, C. A. (2007), A simulated annealing-based optimization approach for integrated process planning and scheduling, International Journal of Computer Integrated Manufacturing, 20(1), 80-95. 

  73. Moon, C. and Seo, Y. (2005), Evolutionary algorithm for advanced process planning and scheduling in a multi-plant, Computers and Industrial Engineering, 48(2), 311-325. 

  74. Qui, L., Hsu, W. J., Huang, S. Y., and Wang, H. (2002), Scheduling and routing algorithms for AGVs: a survey, International Journal of Production Research, 40(3), 745-760. 

  75. Zhang, F., Zhang, Y. F., and Nee, A. Y. C. (1997), Using genetic algorithms in process planning for job shop machining, IEEE Transactions on Evolutionary Computation, 1(4), 278-289. 

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로