$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Photocatalysis of Sub-ppm-level Isopropyl Alcohol by Plug-flow Reactor Coated with Nonmetal Elements Irradiated with Visible Light 원문보기

청정기술 = Clean technology, v.18 no.4, 2012년, pp.419 - 425  

Jo, Wan-Kuen (Department of Environmental Engineering, Kyungpook National University)

초록
AI-Helper 아이콘AI-Helper

본 연구는 황 원소와 질소 원소가 도핑된 이산화티타늄의 특성을 조사하고 8-와트(W) 일반 램프와 가시광선 영역의 발광 다이오드 조사 조건에서 낮은 농도수준의 가스상 이소프로필 알코올(isopropyl alcohol, IPA)의 광촉매적 분해능에 대하여 조사하였다. 또한, 이소프로필 알코올의 광촉매 분해시 발생되는 아세톤의 생성에 대해서도 조사하였다. 황 원소와 질소 원소가 도핑된 이산화티타늄의 표면 조사결과, 두 촉매들은 가시광선 조사(visible light-emitting-diodes, LEDs)에 의해 효율적으로 활성화될 수 있는 것으로 나타났다. 두 촉매 모두에 대하여, 공기 유량이 감소함에 따라 이소프로필 알코올의 제거 효율이 증가하는 것으로 나타났다. 황 도핑 촉매의 경우, 유량이 0.1 L $min^{-1}$일 때 이소프로필 알코올 제거효율이 거의 100%로 나타난 반면에 유량이 2.0 L $min^{-1}$일 때 이소프로필 알코올 제거효율은 39%로 나타났다. 질소 도핑 촉매의 경우에는, 유량이 0.1 L $min^{-1}$일 때 이소프로필 알코올 제거효율이 거의 100%로 나타난 반면에 유량이 2.0 L $min^{-1}$일 때 이소프로필 알코올 제거효율은 90% 이상으로 나타났다. 이소프로필 알코올 제거 효율과는 달리, 유량 감소에 따라 아세톤 생성율은 감소하는 것으로 나타났다. 결과적으로, 아세톤 생성을 최소화하고 이소프로필 알코올 제거 효율을 높이기 위해서는 질소 도핑 촉매를 낮은 유량 조건에서 작동시키는 것이 나은 것으로 나타났다. 또한, 이소프로필 알코올 제거를 위해 가시광선 조사 발광 다이오드보다 8-와트 일반램프가 효율적인 것으로 나타났다.

Abstract AI-Helper 아이콘AI-Helper

This work explored the characteristics and the photocatalytic activities of S element-doped $TiO_2$ (S-$TiO_2$) and N element-doped $TiO_2$ (N-$TiO_2$) for the decomposition of gas-phase isopropyl alcohol (IPA) at sub-ppm concentrations, using a plug-flow ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • Visible absorption spectra were obtained for the dry pressed disk samples using a Varian CARY 5G spectrophotometer equipped with an integrating sphere. FTIR analysis was performed on a PerkinElmer Spectrum GX spectrophotometer at a resolution of 4 cm-1 in the spectral range of 400-4,000 cm-1.
  • The inner wall of the outer Pyrex tube was coated with a thin film of the N- or S-TiO2 photocatalyst. The reactor was designed to direct the flow of incoming air toward the UV light in order to increase the air turbulence inside the reactor, thereby enhancing the distribution of the target compounds onto the photocatalyst surface. The standard gas (0.
  • In addition, this compound is a prototype VOC (volatile organic compound) for photocatalytic studies because the initial reaction pathway involves almost exclusively the partial oxidation to acetone[15]. Therefore, this study also investigated the generation yield of acetone during photocatalytic processes for IPA at subppm levels. It is highlighted that this study has a unique characteristic in that the element-doped photocatalysts combined with LED as a light source were applied for the photocatalytic decomposition of low-level gas-phase species.
  • This study explored the cleaning efficiency of IPA and generation yield of acetone using S- and N-TiO2 photocatalytic systems under visible-light irradiation. According to the survey of surface characteristics of prepared S- and N-TiO2 photocatalysts, it was indicated that they could be effectively activated by visible-light irradiation.

대상 데이터

  • These results are ascribed to the difference of Ti source for the preparation of S- and N-TiO2 photocatalysts. The S-TiO2 photocatalysts was prepared using TIP as a Ti source, while N-TiO2 was prepared using the Degussa P25 TiO2. Therefore, the XRD patterns were similar for pure TiO2 and N-TiO2 photocatalyst.
본문요약 정보가 도움이 되었나요?

참고문헌 (31)

  1. Bouzaza, A., Vallet, C., and Laplanche, A., "Photocatalytic Degradation of Some VOCs in the Gas Phase Using an Annular Flow Reactor: Determination of the Contribution of Mass Transfer and Chemical Reaction Steps in the Photodegradation Process," J. Photochem. Photobiol. A, 177, 212-217 (2007). 

  2. Sekiguchi, K., Morinaga, W., Sakamoto, K., Tamura, H., Yasui, F., Mehrjouei, M., Muller, S., and Moller, D., "Degradation of VOC Gases in Liquid Phase by Photocatalysis at the Bubble Interface," Appl. Catal., 97, 190-197 (2010). 

  3. Herrmann, J. M., "Fundamentals and Misconceptions in Photocatalysis," J. Photochem. Photobiol. A, 216, 85-93 (2010). 

  4. Han, F., Kambala, V. S. R., Srinivasan, M., Rajarathnam, D., and Naidu, R., "Tailored Titanium Dioxide Photocatalysts for the Degradation of Organic Dyes in Wastewater Treatment: A Review," Appl. Catal. A, 359, 25-40 (2009). 

  5. Paz, Y., "Application of $TiO_{2}$ Photocatalysis for Air Treatment: Patents' Overview," Appl. Catal. B, 99, 448-460 (2010). 

  6. Chatterjee, D., and Dasgupta, S., "Visible Light Induced Photocatalytic Degradation of Organic Pollutants," J. Photochem. Photobiol. C, 6, 186-205 (2005). 

  7. Yamada, K., Yamane, H., Matsushima, S., Nakamura, H., Ohira, K., Kouya, M., and Kumada, K., "Effect of Thermal Treatment on Photocatalytic Activity of N-doped $TiO_{2}$ Particles under Visible Light," Thin Solid Films, 516, 7482-7487 (2008). 

  8. Bayati, M. R., Moshfegh, A. Z., and Golestani-Fard, F., "On the Photocatalytic Activity of the Sulfur Doped Titania Nanoporous Films Derived via Micro-arc Oxidation," Appl. Catal. A, 389, 60-67 (2010). 

  9. Jo, W. K., and Yang, C. H., "Visible-light-induced Photocatalysis of Low-level Methyl-tertiary Butyl Ether (MTBE) and Trichloroethylene (TCE) Using Element-doped Titanium Dioxide," Build. Environ., 45, 819-824 (2010). 

  10. Sun, H., Wang, S., Ang, H. M., Tade, M. O., and Li, Q., "Halogen Element Modified Titanium Dioxide for Visible Light Photocatalysis," Chem. Eng. J., 162, 437-447 (2010). 

  11. Mahdjoub, N., Allen, N., Kelly, P., and Vishnyakov, V., "SEM and Raman Study of Thermally Treated $TiO_{2}$ Anatase Nanopowders: Influence of Calcination on Photocatalytic Activity," J. Photochem. Photobiol. A, 211, 59-64 (2010). 

  12. Luis, A. M., Neves, M. C., Mendonca, M. H., and Monteiro, O. C., "Influence of Calcination Parameters on the $TiO_{2}$ Photocatalytic Properties," Mater. Chem. Phys., 125, 20-25 (2011). 

  13. http://en.wikipedia.org/wiki/Light-emitting_diode 

  14. Jia, C., Batterman, S., and Godwin, C., "VOCs in Industrial, Urban and Suburban Neighborhoods-Part 2: Factors Affecting Indoor and Outdoor Concentrations," Atmos. Environ., 42, 2101-2116 (2008). 

  15. Vildozo, D., Ferronato, C., Sleiman, M., and Chovelon, J. -M., "Photocatalytic Treatment of Indoor Air: Optimization of 2- propanol Removal Using a Response Surface Methodology (RSM)," Appl. Catal. B, 94, 303-310 (2010). 

  16. Jo, W. K., and Kim, J. T., "Application of Visible-light Photocatalysis with Nitrogen-doped or Unmodified Titanium Dioxide for Control of Indoor-level Volatile Organic Compounds," J. Hazard. Mater., 164, 360-366 (2009). 

  17. Horikawa, T., Katoh, M., and Tomida, T., "Preparation and Characterization of Nitrogen-doped Mesoporous Titania with High Specific Surface Area," Microp. Mesop. Mater., 110, 397-404 (2008). 

  18. Qin, X., Jing, L., Tian, G., Qu, Y., and Feng, Y., "Enhanced Photocatalytic Activity for Degrading Rhodamine B Solution of Commercial Degussa P25 $TiO_{2}$ and its Mechanisms," J. Hazard. Mater., 172, 1168-1174 (2009). 

  19. Nam, S. H., Kim, T. K., and Boo, J. H., "Physical Property and Photo-catalytic Activity of Sulfur Doped $TiO_{2}$ Catalysts Responding to Visible Light," Catal. Today, 185, 259-262 (2012). 

  20. Ohno, T., Akiyoshi, M., Umebayashi, T., Asai, K., Mitsui, T., and Matsumura M, "Preparation of S-doped $TiO_{2}$ Photocatalysts and their Photocatalytic Activities under Visible Light," Appl. Catal. A, 265, 115-121 (2004). 

  21. Soler-Illia, G. J. A. A., Louis, A., and Sanchez, C., "Sybthesis and Characterization of Mesostructured Titania-based Materials through Evaporation-induced Self-assembly," Chem. Mater., 14, 750-759 (2002). 

  22. Peng, T., Zhao, D., Dai, K., Shi, W., and Hirao, K., "Synthesis of Titanium Dioxide Nanoparticles with Mesoporous Anatase Wall and High Photocatalytic Activity," J. Phys. Chem. B, 109, 4947-4952 (2005). 

  23. Augugliaro, V., Kisch, H., Loddo, V., Lopez-Munoz, M. J., Marquez-Alvarez, C., Palmisano, G., Palmisano, L., Parrino, F., and Yurdakal, S., "Photocatalytic Oxidation of Aromatic Alcohols to Aldehydes in Aqueous Suspension of Home Prepared Titanium Dioxide 2. Intrinsic and Surface Features of Catalysts," Appl. Catal. A, 349, 189-197 (2008). 

  24. Nolan, N. T., Synnott, D. W., Seery, M. K., Hinder, S. J., Wassenhoven, A. V., and Pillai, S. C., "Effect of N-doping on the Photocatalytic Activity of Sol-gel $TiO_{2}$ ," J. Hazard. Mater., 211-212, 88-94 (2012). 

  25. Madarasz, J., Braileanu, A., Cri?an, M., and Pokol, G., "Comprehensive Evolved Gas Analysis (EGA) of Amorphous Precursors for S-doped Titania by in situ TG-FTIR and TG/DTAMS in Air: Part 2. Precursor from Thiourea and Titanium(IV)- n-butoxide," J. Anal. Appl. Pyrol., 85, 549-556 (2009). 

  26. Boulinguiez, B., Bouzaza, A., Merabet, S., and Wolbert, D., "Photocatalytic Degradation of Ammonia and Butyric Acid in Plug-flow Reactor: Degradation Kinetic Modeling with Contribution of Mass Transfer," J. Photochem. Photobiol. A, 200, 254-261 (2008). 

  27. Li, D., Xiong, K., Yang, Z., Liu, C., Feng, X., and Lu, X., "Process Intensification of Heterogeneous Photocatalysis with Static Mixer: Enhanced Mass Transfer of Reactive Species," Catal. Today, 175, 322-327 (2011). 

  28. Arsac, F., Bianchi, D., Chovelon, J. M., Ferronato, C., and Herrmann, J. M., "Experimental Microkinetic Approach of the Photocatalytic Oxidation of Isopropyl Alcohol on $TiO_{2}$ . Part 1. Surface Elementary Steps Involving Gaseous and Adsorbed $C_{3}$ $H_{2}O$ Species," J. Phys. Chem. B, 110, 4202-4212 (2006). 

  29. Den, W., and Wang, C. C., "Enhancement of Adsorptive Chemical Filters via Titania Photocatalysts to Remove Vapor-phase Toluene and Isopropanol," Sep. Purif. Technol., 85, 101-111 (2012). 

  30. Demeestere K., Dewulf J., and Van Langenhove H., "Heterogeneous Photocatalysis as an Advanced Oxidation Process for the Abatement of Chlorinated, Monocyclic Aromatic and Sulfurous Volatile Organic Compounds in Air: State of the Art," Crit. Rev. Environ. Sci. Technol., 37, 489-538 (2007). 

  31. Liu B., and Zhao X., "A Kinetic Model for Evaluating the Dependence of the Quantum Yield of Nano-TiO2 Based Photocatalysis on Light Irradiance, Grain Size, Carrier Lifetime, and Minority Carrier Diffusion Coefficient: Indirect Interfacial Charge Transfer," Electrochimica Acta, 55, 4062-4070 (2010). 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로