$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

미세조류 3종의 먹이에 따른 피조개 Scapharca broughtonii 유생과 부착치패의 성장과 생존
Effect of Three Microalgal Species on Growth and Survival of Larvae and Spat of Ark Shell Scapharca broughtonii 원문보기

한국패류학회지 = The Korean journal of malacology, v.28 no.4, 2012년, pp.293 - 303  

민병희 (부산광역시 수산자원연구소) ,  김병학 (국립수산과학원 남서해수산연구소) ,  권오남 (강릉원주대학교 해양생명공학부) ,  박흠기 (강릉원주대학교 해양생명공학부) ,  허성범 (부경대학교 해양바이오신소재학과)

초록
AI-Helper 아이콘AI-Helper

I. galbana, P. lutheri 및 C. simplex 3종을 먹이로 공급하며, 미세조류 종류에 따른 피조개 유생과 부착치패의 성장과 생존율 등을 비교하였다. 서로 다른 미세조류 3종을 단일 또는 혼합하여 먹이로 공급한 피조개 유생의 성장은 혼합 공급구에서 가장 빠르게 나타내었고, 단일 공급구 중에서 C. simplex 공급구에서 가장 높은 성장을 보였다. 또 유생의 생존율은 혼합 공급구에서 $27.4{\pm}5.3%$로 가장 높게 나타내었고, 단일 공급구 중에서 C. simplex 공급구에서 $14.5{\pm}2.3%$로 가장 높았다. I. galbana, P. lutheri, C. simplex 3종을 단일 또는 동일비율로 혼합한 미세조류의 지방산 조성은 EPA의 경우 C. simplex에서만 $25.9{\pm}0.64%$로 나타났고, 다불포화지방산(PUFA)과 n-3 HUFA 함량은 C. simplex에서 가장 높게 나타났다. 또 이들 미세조류를 먹이로 공급한 피조개 부착치패의 경우 C. simplex 공급구에서 포화지방산AA 함량이 유의하게 높았다. 이와 같은 C. simplex의 지방산 조성이 피조개 유생과 부착치패의 성장과 생존율의 원인으로 판단된다. 따라서 단일종으로는 C. simplex가 가장 적합하나 3종을 혼합하여 공급하는 것이 더 좋은 먹이효율을 유도할 수 있다.

Abstract AI-Helper 아이콘AI-Helper

Growth and survival (%) of the larvae and spats of Scapharca broughtonii fed on three different microalgal species (Isochrysis galbana, Pavlova lutheri and Chaetoceros simplex) were investigated with the analysis of fatty acid composition. The larvae fed on mixed diet with three microalgal species s...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • , 1992). 따라서 본 연구는 3종 (I. galbana, P. lutheri, C. simplex) 의 미세조류가 피조개 유생과 부착치패의 성장, 생존에 미치는 영향을 아미노산 및 지방산 조성과 연계하여 조사하였다.
  • 따라서 본 연구는 조개류 먹이생물로 널리 이용되는 Isochrysis galbana, Pavlova lutheri 및 Chaetoceros simplex가 피조개 유생과 부착치패의 성장 및 생존에 미치는 영향을 아미노산 및 지방산 조성과 연계하여 구명하고자 하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
많이 이용되는 조개류 먹이생물의 종류는? 따라서 본 연구는 조개류 먹이생물로 널리 이용되는 Isochrysis galbana, Pavlova lutheri 및 Chaetoceros simplex가 피조개 유생과 부착치패의 성장 및 생존에 미치는 영향을 아미노산 및 지방산 조성과 연계하여 구명하고자 하였다.
피조개 유생과 부착치패의 성장과 생존율을 비교하기 위하여 먹이생물인 미세조류 3종(galbana, P. lutheri 및 C. simplex)을 단일 또는 혼합하여 공급한 결과는? 서로 다른 미세조류 3종을 단일 또는 혼합하여 먹이로 공급한 피조개 유생의 성장은 혼합 공급구에서 가장 빠르게 나타내 었고, 단일 공급구 중에서 C. simplex 공급구에서 가장 높은 성장을 보였다. 또 유생의 생존율은 혼합 공급구에서 27.4 ± 5.3%로 가장 높게 나타내었고, 단일 공급구 중에서 C. simplex 공급구에서 14.5 ± 2.3%로 가장 높았다. I. galbana, P. lutheri, C. simplex 3종을 단일 또는 동일 비율로 혼합한 미세조류의 지방산 조성은 EPA의 경우 C. simplex에서만 25.9 ± 0.64%로 나타났고, 다불포화지방산 (PUFA) 과 n–3 HUFA 함량은 C. simplex에서 가장 높게 나타났다. 또 이들 미세조류를 먹이로 공급한 피조개 부착치패의 경우 C. simplex 공급구에서 포화지방산과 AA 함량이 유의하게 높았다. 이와 같은 C. simplex의 지방산 조성이 피조개 유생과 부착치패의 성장과 생존율의 원인으로 판단된다. 따라서 단일종으로는 C. simplex가 가장 적합하나 3종을 혼합하여 공급하는 것이 더 좋은 먹이효율을 유도할 수 있다.
조개류 유생의 성장과 생존이 좌우되는 요인은? 조개류 유생의 성장과 생존은 난질 (Lannan et al., 1980a, b; Gallager and Mann, 1986), 환경요인 (Helm and Millican, 1977; Nell and Holliday, 1988, His et al., 1989), 사육밀도 (Min et al., 1995), 먹이생물 (Web and Chu, 1983; Laing, 1995; Hur, 2004; Hur et al., 2008; Min, 2012) 등에 좌우된다. 특히 생존율은 먹이로 이용되는 미세조류의 양과 질 (Wilson, 1978; Helm and Laing, 1987; Min et al.
질의응답 정보가 도움이 되었나요?

참고문헌 (43)

  1. Ballantine, J.A., Lavis, A. and Morris, R.J. (1979) Sterols of the phytoplankton-effects of illumination and growth stage. Phytochemistry, 18: 1459-1466. 

  2. Brown, M.R., Jeffrey, S.W. and Garland, C.D. (1989) Nutritional aspects of microalgae used in mariculture: a literature review. C.S.I.R.O Marine Laboratories Report 205. C.S.I.R.O., Australia, 44pp. 

  3. Brown, M.R., Jeffrey, S.W., Volkman, J.K. and Dunstan, G.A. (1997) Nutritional properties of microalgae for mariculture. Aquaculture, 151: 315-331. 

  4. Castell, J.D., Bell, J.G., Tocher, D.R. and Sargent, J.R. (1994) Effects of purified diets containing different combinations of arachidonic and docosahexaenoic acid on survival, growth and fatty acid composition of juvenile turbot (Scophthalmus maximus). Aquaculture, 128: 315-333. 

  5. Cheong, S.C., Kang, H.W. and Lee, J.M. (1982) Experiments on the early artificial seedling production of ark shell Anadara broughtonii (SCHRENCK). Bulletin of the national Fisheries Research and Development, 28: 185-197. [in Korean] 

  6. Coultate, T.P. (1989) Food : the chemistry of its components. Royal Society of Chemistry Editiors, Letchworth, Herts (England), 325pp. 

  7. Delaunay, F., Marty, Y., Moal, J. and Samain, J.F. (1992) Growth and lipid class composition of Pecten maximus (L) Larvae grown under hatchery conditions. Journal of Experimental Marine Biology and Ecology, 163: 209-219. 

  8. De Pauw, N., Morales, J. and Persoone, G. (1984) Mass culture of microalgae in aquaculture systems : progress and constraints. Hydrobiologia, 116/117: 121-134. 

  9. Duncan, D.B. (1955) Multiple-range and multiple F tests. Biometrics, 11: 1-42. 

  10. Enright, C.T., Newkirk, G.F., Craigiel, J.S. and Castell, J.D. (1986) Evaluation of phytoplankton as diets for juvenile Ostrea edulis L. Journal of Experimental Marine Biology and Ecology, 96: 1-13. 

  11. Epifanio, C.E. (1979) Comparison of yeast and algal diets for bivalve molluscs. Aquaculture, 16: 187-192. 

  12. Gallager, S.M. and Mann, R. (1986) Growth and survival of larvae of Mercenaria mercenaria (L.) and Crassostrea virginica (Gmelin) relative to brood conditioning and lipid content of eggs. Aquaculture, 56: 105-121. 

  13. Helm, M.M. and Millican, P.F. (1977) Experiments in the hatchery rearing of Pacific oyster larvae (Crassostrea gigas Thunberg). Aquaculture, 11: 1-12. 

  14. Helm, M.M. and Laing, L. (1987) Preliminary observation on the nutritional value of "Tahiti Isochrysis" to bivalve larvae. Aquaculture, 62: 281-288. 

  15. His, E., Robert, R. and Dinet, A. (1989) Combined effects of temperature and salinity on fed and starved larvae of the Mediterranean mussel Mytilus galloprivincialis and the Japanese oyster Crassostrea gigas. Marine Biology, 100: 455-463. 

  16. Holland, D.L. (1978) Lipid reserves and energy metabolism in the larvae of benthic marine invertebrates. In: Malins, D.C. and Sargent, J.R. (Eds.), Biochemical and Biophysical Perspectives in Marine Biology, Vol 4, Academic Press, London and New York, 85-123. 

  17. Hur, Y.B. (2004) Dietary value of microalgae for larvae culture of Pacific oyster, Crassostrea gigas. Ph.D. thesis, Pukyong National University, 133pp. [in Korean] 

  18. Hur, Y.B., Min, K.S., Kim, T.E., Lee, S.J. and Hur, S.B. (2008) Larvae growth and biochemical composition change of the Pacific oyster Crassostrea gigas, larvae during artificial seed production. Journal of Aquaculture, 21: 203-212. [in Korean] 

  19. Imai, S. and Nishikawa, M.S. (1969) Seedling production of Scallop, Patinopecten yessoensis and Ark shell, Anadara broughtonii. Japanese Society for Aquaculture Research, 16: 309-316. 

  20. Iwamoto, H. and Sugimoto, H. (1955) Fat synthesis in unicellular algae: Part II. Chemical composition of nitrogen deficient Chlorella cells. Bulletin of the Agricultural and Chemical Society Japan, 19: 247-252. 

  21. Laing, I. (1995) Effect of food supply on oyster spatfall. Aquaculture, 131: 315-324. 

  22. Langdon, C.J. and Waldock, M.J. (1981) The effect of algal and artificial diets on the growth and fatty acid composition of Crassostrea gigas. Journal of Marine Biological Association of the united Kingdom, 61: 431-448. 

  23. Langton, R.W. and Mckey, G.U. (1976) Growth of Crassostrea gigas (Thungberg) spat under different feeding regimes in hatchery. Aquaculture, 7: 225-233. 

  24. Lannan, C.J. (1980a) Broodstock management of Crassostrea gigas. I. Genetic and environmental variation in survival in the larval rearing system. Aquaculture, 21: 323-336. 

  25. Lannan, C.J. (1980b) Broodstock management of Crassostrea gigas. III. Selective breeding for improved larval survival. Aquaculture, 21: 347-351. 

  26. Loosanoff, V.L. (1950) Rate of water pumping and shell movements of oyster in relation to temperature (Abstract). The Anatomical Record, 108: 620pp. 

  27. Loosanoff, V.L. and Davis, H.C. (1963) Rearing of bivalve molluscs. Advanced Marine Biology, 1: 1-136. 

  28. Martinez, L.A., Caceres, E., Uribe, E. and Diaz, M.A. (1995) Effects of different feeding regimes on larval growth and the energy budget of juvenile Chilean scallops, Argopecten purpuratus Lamarck. Aquaculture, 132: 313-323. 

  29. Marty, Y., Delaunay, F., Moal, J. and Samain, J.F. (1992) Changes in the fatty acid composition of Pecten maximus (L) during larval development. Journal of Experimental Marine Biology and Ecology, 163: 221-234. 

  30. Min, B.H. (2012) Dietary value of three microalgal species for seedling production of the Ark shell Scapharca broughtonii. Ph.D. thesis, Pukyong National University, 118pp. [in Korean] 

  31. Min, K.S., Chang, Y.J., Park, D.W., Jung, C.G., Kim, D.H. and Kim, G.H. (1995) Studies on Rearing conditions for mass seedling production in Pacific oyster, Crassostrea gigas. Bulletin of the national Fisheries Research and Development, 49: 91-111. [in Korean] 

  32. Nell, J.A. and Holliday, J.E. 1988. Effects of salinity on the growth and survival of Sydney rock oyster (Saccostrea commercialis) and Pacific oyster (Crassostrea gigas) larvae and spat. Aquaculture, 68: 39-44. 

  33. O'Connor, W.A., Nell, J.A. and Diemar, J.A. (1992) The evaluation of twelve algal species as food for juvenile Sydney rock oysters Saccostrea commercialis (Iredale & Roughley). Aquaculture, 108: 277-283. 

  34. Parrish, C.C. (1987) Separation of aquatic lipid classes by Chromarod thin-layer chromatography with measurement by latroscan flame ionization detection. Canadian Journal of Fisheries and Aquatic Sciences, 44: 722-731. 

  35. Powell, E.N., Bocheneck, E.A., Klinck, J.M. and Hoofmann, E.E. (2002) Influence of food quality and quantity on the growth and development of Crassostrea gigas larvae a modeling approach. Aquaculture, 210: 89-117. 

  36. Pyen, C.K., Rho, Y.G. and Yoo, Y.K. (1976) Studies on spat collection and rearing of the larvae, Anadara broughtonii (SCHRENCK) in tank. Bulletin of the national Fisheries Research and Development, 15: 7-20. [in Korean] 

  37. Rezeq, T.A. and James, C.M. (1987) Production and nutritional quality of the rotifer Brachionus plicatilis in relation to different cell densities of marine Chlorella sp. Hydrobiologia, 147: 257-261. 

  38. Thompson, P.A., Guo, M. and Harrison, P.J. (1993) The influence of irradiance on the biochemical composition of three phytoplankton species and their nutritional value for larvae of the Pacific oyster (Crassostrea gigas). Marine Biology, 117: 259-268. 

  39. Volkman, J.K., Brown, M.R., Dunstan, G.A. and Jeffrey, S.W. (1993) The biochemical composition of marine microalgae from the class eustigmatophyceae. Journal of Phycology, 29: 69-78. 

  40. Walne, P.R. (1974) Culture of bivalve molluscs. Whitefriars Press Ltd., London and Tondridge, 173pp. 

  41. Watanabe, T., Kitajima, C. and Fujita, S. (1983) Nutritional values of live organisms used in Japan for mass propagation of fish: a review. Aquaculture, 34: 115-143. 

  42. Web, K.L. and Chu, F.L.E. (1983) Phytoplankton as a food source for bivalve larvae. In: Pruder, G.D., Langdon, C., Conklin, D. (Eds.), Proceedings of the 2nd International Conference of Aquaculture Nutrition: Biochemical and Physiological Approaches to Shellfish Nutrition. World Mariculture Society Special Publication, 2: 272-291. 

  43. Wilson, J.H. (1978) The food value of Phaeodactylum tricornutum Bohlin to the larvae of Ostrea edulis L. and Crassostrea gigas Thunberg. Aquaculture, 13: 313-323. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로