$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

유방암의 접선 세기조절 방사선치료 선량 특성 분석
Analysis on the Dosimetric Characteristics of Tangential Breast Intensity Modulated Radiotherapy 원문보기

Progress in Medical Physics = 의학물리, v.23 no.4, 2012년, pp.219 - 228  

윤미선 (전남대학교 의과대학 방사선종양학교실) ,  김용협 (전남대학교 의과대학 방사선종양학교실) ,  정재욱 (전남대학교 의과대학 방사선종양학교실) ,  남택근 (전남대학교 의과대학 방사선종양학교실) ,  안성자 (전남대학교 의과대학 방사선종양학교실) ,  정웅기 (전남대학교 의과대학 방사선종양학교실) ,  송주영 (전남대학교 의과대학 방사선종양학교실)

초록
AI-Helper 아이콘AI-Helper

기존의 쐐기(wedge) 필터를 사용하는 접선조사(tangential irradiation) 방식의 일반적인 유방암 방사선치료와 동일한 접선 조사야(filed)를 사용하면서 쐐기 필터를 삽입하는 대신 다엽콜리메터의 움직임을 통해 치료부위의 선량분포를 균일하게 형성토록 하는 접선 세기조절 방사선치료(tangential breast Intensity modulated radiotherapy, T-B IMRT)가 유방암치료에 적용되고 있다. 본 연구에서는 T-B IMRT치료계획에서 계산된 선량분포를 기존의 쐐기 필터를 사용한 일반적인 접선조사 방식의 치료계획과 비교하여 치료표적 및 중요장기에서의 선량분포 측면에서 T-B IMRT의 타당성을 살펴보고, 실제 T-B IMRT치료 빔 조사 시 선량 측정 및 치료계획 결과와의 오차 분석을 통해 선량 분포의 정확도를 확인하고자 하였다. 기존의 쐐기필터를 이용한 접선조사 방식으로 치료한 유방암 환자 15명을 대상으로 T-B IMRT치료계획을 세운 후, 계산된 선량분포를 비교, 분석하였다. T-B IMRT치료계획에서 치료표적 부피 내 선량분포의 균일도가 기존의 쐐기를 사용한 접선조사 방식보다 향상된 결과를 보였으며, 주변의 정상조직과 중요장기의 선량을 상대적으로 줄일 수 있음을 확인할 수 있었다. T-B IMRT의 실제 치료조사 시 선량정확도를 분석하기 위해 적합한 팬텀을 사용하여 품질보증(QA) 치료계획을 수립하였다. 원기둥 형태의 아크릴에 이온전리함을 삽입한 형태의 팬텀을 사용하여 치료계획과 실제 치료 빔 조사를 통해 측정된 절대선량 값을 비교하였으며, 평균 오차는 $0.7{\pm}1.4%$로 분석되었다. 이차원 다이오드 검출기 배열장치를 이용한 선량분포의 정확도 분석에서는 치료계획 시 계산된 선량분포와 실제 측정된 선량분포의 gamma evaluation (3%, 3 mm 기준)를 통해 평균 $97.3{\pm}2.9%$의 합격률(pass rate)로 타당성 있는 정확도를 보여주었다. 본 연구를 통해 선량분포 측면에서 기존 쐐기필터를 이용한 접선 조사방식의 방사선치료 대비 T-B IMRT의 장점을 확인할 수 있었고, T-B IMRT에 적합하게 수립된 품질보증 과정을 통해 실제 조사되는 선량의 정확도를 확인할 수 있었다.

Abstract AI-Helper 아이콘AI-Helper

The tangential breast intensity modulated radiotherapy (T-B IMRT) technique, which uses the same tangential fields as conventional 3-dimensional conformal radiotherapy (3D-CRT) plans with physical wedges, was analyzed in terms of the calculated dose distribution feature and dosimetric accuracy of be...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • This was done to verify that a physical wedge and T-B IMRT could provide a solution to the heterogeneous dose distribution of the open-field plan. All the plans were created in the Panther system, and the ARTISTE LINAC was used for beam delivery.
  • 1a. Conventional 2-tangential fields were set up, and 3 plans were generated, which differed in the application of the beam intensity modulation device to the tangential fields: an open field plan, one that used a physical wedge in the lateral field, and a T-B IMRT plan. The calculated dose distribution in each plan was compared with the dose measurement obtained using Gafchromic EBT2 film (International Specialty Products, Wayne, NJ, USA) inserted between the 2 cylindrical phantoms as shown in Fig.
  • 11. Film analysis results for the verification of the T-B IMRT function to make correction of the inhomogeneous dose distribution. (a) dose distribution applying the open fields.
  • In the present study, QA was performed using 2 methods. First, a point dose was measured using an ionization chamber and the cylindrical acrylic phantom, which enabled the simulation of the geometry of the breast. In the second process, the dose distribution was analyzed using the 2D diode detector array, MapCHECK.
  • In addition, the dose accuracy of T-B IMRT was examined by measuring dose distribution. T-B IMRT plans were generated using the computed tomography (CT) data of patients who had been treated with conventional 3D-CRT using the wedge technique, and the feasibility of these plans was analyzed by comparing the calculated dose value and the dose volume histogram (DVH) of the target and the OAR. The absolute dose and dose distribution were measured using T-B IMRT quality assurance (QA) plans generated with the specialized phantoms and compared with calculated data to verify the dosimetric accuracy during the process of beam delivery.
  • Although the dose distribution is usually assessed using film measurements, 2D diode detector array was used to minimize expenses and because the MapCHECK is an effective method for the analysis of the pass rate values from the gamma evaluation process. The MapCHECK was placed in the sagittal direction of detector arrays in this study because it enabled the analysis of the wider dose distributions caused by the tangential fields of T-B IMRT.
  • T-B IMRT plans were generated using the computed tomography (CT) data of patients who had been treated with conventional 3D-CRT using the wedge technique, and the feasibility of these plans was analyzed by comparing the calculated dose value and the dose volume histogram (DVH) of the target and the OAR. The absolute dose and dose distribution were measured using T-B IMRT quality assurance (QA) plans generated with the specialized phantoms and compared with calculated data to verify the dosimetric accuracy during the process of beam delivery.
  • The accuracy of dose distribution was analyzed with MapCHECK (SunNuclear, Melbourne, FL, USA), a 2D diode detector array that was inserted into the MapPHAN (SunNu- clear, Melbourne, FL, USA), a water equivalent solid phantom, and the CT images were acquired with the placement of diode array's plane in the sagittal direction.
  • The calculated dose data of T-B IMRT were compared with those of 3D-CRT, and each plan was normalized with the constraint that 90% of the isodose surface should cover 90% of the CTV to enable the objective analysis of the dose data in the 2 plans. The mean dose, maximum dose and homogeneity index (HI)14) of the CTV were compared to analyze the appropriateness and homogeneity of the dose distribution in the CTV.
  • 3. The coincidences in dose distribution were analyzed with the gamma evaluation method, and the selected tolerance parameters for the gamma index were 3% dose difference and 3 mm distance to agreement between the calculated dose and the dose measured with the MapCHECK.
  • The dose distributions obtained by the irradiating films inserted between the cylindrical phantoms suggest that higher doses were delivered to the anterior part of the phantom, which is characterized by reduced thickness in the direction of the beam angle when only open fields were applied. The problem of inhomogeneous dose distributions could be solved by applying the physical wedge and the T-B IMRT method, as demonstrated by the results of dose calculation in RTP and film measurements.
  • The respiratory target motional effect can introduce some error in the real breast treatment, which should be considered in the future study with the analysis of dosimetric errors in T-B-IMRT compared with the conventional 3D-CRT under the respiratory motional conditions.
  • The dosimetric accuracy of T-B IMRT was analyzed using QA plans that were created with the appropriate phantoms. Two QA plans were created for each T-B IMRT patient to verify the absolute point dose and the dose distribution, resulting in the generation and implementation of 30 QA plans for 15 patients for dose measurement.

대상 데이터

  • The A1SL ion chamber (Standard Imaging, Middleton, WI, USA) was used, and the CT images were acquired and applied for the creation of QA plans with the Panther RTP system. An A1SL ion chamber with 0.057 cm3 of air volume and a DOSE1 (IBA Dosimetry, Schwarzenbruck, Germany) electrometer were used for the measurement of point dose. The relative calibration process for the measurement of a point dose was performed in the conditions of 10×10 cm2 field size, 100 cm SAD (source to axis distance) and 5 cm depth.
  • 2. The A1SL ion chamber (Standard Imaging, Middleton, WI, USA) was used, and the CT images were acquired and applied for the creation of QA plans with the Panther RTP system. An A1SL ion chamber with 0.

이론/모형

  • The 3D-CRT plans were created in the Eclipse system (Varian, PaloAlto, CA, USA) and the pencil beam convolution algorithm was used for dose calculation. The energy of photon was 6 MV and the applied fields were tangential fields with the insertion of physical wedge.
  • The T-B IMRT plans were prepared with the direct aperture optimization algorithm11-13) in the Panther (Prowess, Concord, CA, USA) radiation treatment planning (RTP) system, and the dedicated linear accelerator (LINAC) for the plan was ARTISTE (Siemens, Erlangen, Germany). The CT and structure data for target and OARs were transferred using the DICOM RT format, and the same gantry angles were maintained for the tangential fields.
  • The present study analyzed the suitability and effectiveness of T-B IMRT by comparison with the calculated dose data for 3D-CRT using the wedge technique. In addition, the dose accuracy of T-B IMRT was examined by measuring dose distribution.
본문요약 정보가 도움이 되었나요?

참고문헌 (19)

  1. Woo TC, Pignol JP, Rakovitch E, et al: Body radiation exposure in breast cancer radiotherapy: impact of breast IMRT and virtual wedge compensation technique. Int J Radiat Oncol Biol Phys 65:52-58 (2006) 

  2. Borghero YO, Salehpour M, McNeese MD, et al: Multileaf field-in-field forward-planned intensity-modulated dose compensation for whole-breast irradiation is associated with reduced contralateral breast dose: a phantom model comparison. Radiother Oncol 82:324-328 (2007) 

  3. Hong L, Hunt M, Chui C, et al: Intensity-modulated tangential beam irradiation of the intact breast. Int J Radiat Oncol Biol Phys 44:1155-1164 (1999) 

  4. Van Asselen B, Raaijmakers CP, Hofman P, et al: An improved breast irradiation technique using three-dimensional geometrical information and intensity modulation. Radiother Oncol 58:341-347 (2001) 

  5. Chui CS, Hong L, Hunt M, et al: A simplified intensity modulated radiation therapy technique for the breast. Med Phys 29:522-529 (2002) 

  6. Bhatnagar AK, Brandner E, Sonnik D, et al: Intensity modulated radiation therapy (IMRT) reduces the dose to the contralateral breast when compared to conventional tangential fields for primary breast irradiation. Breast Cancer Res Treat 96:41-46 (2006) 

  7. Selvaraj RN, Beriwal S, Pourarian RJ, et al: Clinical implementation of tangential field intensity modulated radiation therapy (IMRT) using sliding window technique and dosimetric comparison with 3D conformal therapy (3DCRT) in breast cancer. Med Dosim 32:299-304 (2007) 

  8. Herrick JS, Neill CJ, Rosser PF: A comprehensive clinical 3-dimensional dosimetric analysis of forward planned IMRT and conventional wedge planned techniques for intact breast radiotherapy. Med Dosim 33:62-70 (2008) 

  9. Jagsi R, Moran J, Marsh R, et al: Evaluation of four techniques using intensity-modulated radiation therapy for comprehensive locoregional irradiation of breast cancer. Int J Radiat Oncol Biol Phys 78:1594-1603 (2010) 

  10. Schubert LK, Gondi V, Sengbusch E, et al: Dosimetric comparison of left-sided whole breast irradiation with 3DCRT, forward-planned IMRT, inverse-planned IMRT, helical tomotherapy, and topotherapy. Radiother Oncol 100:241-246 (2011) 

  11. Shepard DM, Earl MA, Li XA, et al: Direct aperture optimization: a turnkey solution for step-and-shoot IMRT. Med Phys 29:1007-1018 (2002) 

  12. Zhang G, Jiang Z, Shepard D, et al: Direct aperture optimization of breast IMRT and the dosimetric impact of respiration motion. Phys Med Biol 51:N357-369 (2006) 

  13. Ahunbay EE, Chen GP, Thatcher S, et al: Direct aperture optimization-based intensity-modulated radiotherapy for whole breast irradiation. Int J Radiat Oncol Biol Phys 67:1248-1258 (2007) 

  14. Wu Q, Mohan R, Morris M, et al: Simultaneous integrated boost intensity modulated radiotherapy for locally advanced headand- neck squamous cell carcinomas. I: dosimetric results. Int J Radiat Oncol Biol Phys 56:573-585 (2003) 

  15. Cao J, Roeske JC, Chmura SJ, et al: Calculation and prediction of the effect of respiratory motion on whole breast radiation therapy dose distributions. Med Dosim 34:126-132 (2009) 

  16. Leonard CE, Tallhamer M, Johnson T, et al: Clinical experience with image-guided radiotherapy in an accelerated partial breast intensity-modulated radiotherapy protocol. Int J Radiat Oncol Biol Phys 76:528-534 (2010) 

  17. Sijtsema NM, Van Dijk-Peters FB, Langendijk JA, et al: Electronic portal images (EPIs) based position verification for the breast simultaneous integrated boost (SIB) technique. Radiother Oncol 102:108-114 (2012) 

  18. Korreman SS, Pedersen AN, Nøttrup TJ, et al: Breathing adapted radiotherapy for breast cancer: comparison of free breathing gating with the breath-hold technique. Radiother Oncol 76:311-318 (2005) 

  19. Korreman SS, Juhler-Nøttrup T, Persson GF, et al: The role of image guidance in respiratory gated radiotherapy. Acta Oncol 47:1390-1396 (2008) 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로