$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

ACE와 ACTN3의 다중유전형질과 근력운동 경기력간의 관계
Polygenic Association of ACE and ACTN3 Polymorphisms with Korean Power Performance 원문보기

생명과학회지 = Journal of life science, v.22 no.3 = no.143, 2012년, pp.398 - 406  

김철현 (한국체육대학교 체육과학연구소)

초록
AI-Helper 아이콘AI-Helper

이 연구는 한국인에서 적용할 수 있는 근력관련 유전적 소인을 ACE 유전자와 ACTN3 유전자를 단일유전자 수준과 다중유전자 수준에서 관계성을 규명하는데 목적이 있다. 연구의 목적을 위해 근력운동종목의 엘리트선수 158명, 국가대표선수 106명, 대조군 676명을 동원하여 ACE ID 다형성과 ACTN3 R577X 다형성 분포를 분석했다. 연구결과, ACE 다형성에서 II 유전형 및 I 대립형질은 유의하게 높은 분포를 가졌고, 반면 DD 유전형 및 I 대립형 질은 유의하게 낮은 분포를 가졌다(Top-Class vs. Control: 41.4% vs. 32.1 for II genotype, 67.1% vs. 57.7% for I allele, p<0.05). ACTN3 다형성에서 RR 유전형 및 R 대립형질은 유의하게 높았고 XX 유전형 및 R 대립형질은 유의하게 낮았다(Top-Class vs. Control: 42.3% vs. 29.0 for RR genotype, 65.3% vs. 54.8% for R allele, p<0.05). 다중유전자 수준에서 근력은 ACE 다형성과 ACTN3 다형성이 조합된 우성조합유전형(II/ID+RR/RX)이 최우수 경기력에서 유의하게 높은 분포를 가졌다(Top-Class vs. Control: 82.9% vs. 66.7% for II/ID+RR/RX, p<0.05). 또한 최우수 경기력을 가진 국가대표는 엘리트와 대조군 보다 유의하게 높은 TGS를 가졌다($66{\pm}0.9$ vs. $58{\pm}1.9$ vs. $56{\pm}2.3$, p<0.05). 이를 근거로 우성조합유전형이 최우수 근력 경기력을 가질 가능성에 대한 승산비는 2.43배(CI:1.45-4.09, p<0.001)였다. 따라서 ACE 다형성과 ACTN3 다형성은 한국인에서 근력과 관계된 유전형으로 확인되었으며, 두 유전자는 상호 조합된 다중유전형에서 근력 경기력에 영향을 줄 것으로 사료된다. 또한 ACE 다형성과 ACTN3 다형성을 조합한 다중유전자는 근력 경기력을 예측할 수 있은 유전적 요인으로 사료되었다.

Abstract AI-Helper 아이콘AI-Helper

This study aimed to examine whether the polygenic profile of ACE ID and ACTN3 R577X polymorphisms is associated with muscle power performance in Korean athletes. For this study, 106 top-class power athletes (top-class group), 158 elite power athletes (elite-class group), and 676 healthy adults (cont...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • ACE와 ACTN3 다형성을 조합하여 ACE-ACTN3 다중유전자가 근력운동의 경기력에 영향을 주는지를 분석하고자 하였다. 다중유전자를 위한 조합 방법은 Williams & Folland[46]와 Santiago 등[39]이 소개한 Total Genotype Score (TGS)를 사용하였다.
  • 그러나 근력은 다차원적인 요인에 의해 결정이 되며 근력의 유전적 요인 또한 다중유전자에 의해 결정이 된다. 따라서 단일 유전적 요인에서 확인된 유전자를 조합하여 다중유전적 요인에서 근력에 대한 관계를 설명하고자 하였다. 두 유전자(ACE & ACTN3) 를 조합하여 근력 경기력 수준에 대한 관계를 분석한 결과, 최우수 근력 경기력에서 우성조합유전형(II/ID+RR/RX)이 높은 분포를 가지고, DD 혹은 XX가 조합된 열성조합유전형 (DD+RR/RX or DD+XX or II/ID +XX)의 분포는 감소하였다.
  • 따라서, 본 연구는 국내 한국인에서 적용할 수 있는 근력관련 유전적 정보를 근력운동 경기력에 따른 단일유전자적 수준과 다중유전자적 수준에서 모두 얻고자 한다. 이에 따른 연구의 목적은 ACE와 ACTN3 유전자가 단일 유전자 수준과 다중 유전자 수준에서 근력운동종목의 경기력에 관계하는 수준을 구명하는데 있다.
  • 이 연구는 유전자 다형성에 따른 근력에 관여되는 수준이 단일 및 다중 유전자 수준에서 관계되는가를 규명하기 위해 수행되었다. 연구의 목적을 위해 최대의 운동단위를 신속하게 동원하여 근수축을 발휘하는 근력을 대표하는 운동종목의 엘리트선수 153명(남자 104명, 여자 49명)과 국가대표선수 111명 (남자 70명, 여자 41명)을 선정하였다.
  • 이 연구는 한국인에게 적용할 수 있는 근력관련 유전적 정보를 ACE 유전자와 ACTN3 유전자를 단일유전자적 수준과 다중유전자적 수준에서 접근하여 이해하고자 목적하였다. 이를 위해 근력을 대표할 수 있는 종목의 집단을 경기력 수준에 따라 구분하여 ACE 다형성 분포와 ACTN3 다형성분포를 단일 및 다중유전자 수준에서 비교하였다.
  • 따라서, 본 연구는 국내 한국인에서 적용할 수 있는 근력관련 유전적 정보를 근력운동 경기력에 따른 단일유전자적 수준과 다중유전자적 수준에서 모두 얻고자 한다. 이에 따른 연구의 목적은 ACE와 ACTN3 유전자가 단일 유전자 수준과 다중 유전자 수준에서 근력운동종목의 경기력에 관계하는 수준을 구명하는데 있다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
ACE I/D 다형성이란 무엇인가? ACE I/D 다형성은 인간의 염색체 17q23에 위치하는 ACE 유전자 안에 16번 인트론(intron) 부위에 287bp Alu 염기서열이 삽입(Insertion: I allele) 또는 결손(Deletion: D allele)으로 II, ID, DD 유전형이 나타나는 유전자 다형성이다[31,41]. 인체에서 DD 유전형은 II 유전형 보다 3배정도 높은 안지오텐신전환효소(angiotensine-converging enzyme: ACE) 활성도를 가진다.
안지오텐신-전환 효소는 어떤 역할을 하는가? 그리고 ID 유전형은 중간수준을, II 유전형은 낮은 안지오텐신전환효소(ACE) 활성도를 가진다[22]. 안지오텐신-전환 효소(ACE)는 조직특이적으로 골격근에서 단백질 합성을 억제시키고, 단백질 분해를 촉진하는 역활을 한다[2,3,4,37,40]. 따라서 안지오텐신전환효소(ACE)의 활성도가 높은 DD 유전형은 높은 안지오텐신전환효소(ACE) 활성도의 작용으로 인해 골격근의 성장과 재생을 지연시켜서 근력의 발달을 제한한다.
체력적 재능과 훈련에 따른 민감도의 차이가 유전자에 의해 조절된다고 볼 수 있는 까닭은 무엇인가? 근력은 골격근이 단기간 최대의 힘을 동원하여 수축하는 능력으로, 건강관련 체력에 중요한 요인일뿐아니라, 대다수의 스포츠종목에서는 반드시 요구되는 필수적인 체력요인이다[27]. 근력은 환경적 요인과 함께 유전적 요인에 의해서 정해진다. 특히, 근력의 60%이상이 유전적 요인에 결정된다. 따라서 개인의 타고난 체력적 재능과 훈련에 따른 민감도의 차이는 유전자에 의해서 조절된다[1,26].
질의응답 정보가 도움이 되었나요?

참고문헌 (49)

  1. Bouchard, C., Malina, R. and Perusse, L. 1997. Genetics of Fitness and Physical Performance. Human Kinetics, Champaign, Illinois. 

  2. Brink, M., Price, S. R., Chrast, J., Bailey, J. L., Anwar, A., Mitch, W. E. and Delafontaine, P. 2001. Angiotensin II induces skeletal muscle wasting through enhanced protein degradation and down-regulates autocrine insulin-like growth factor I. Endocrinology 142, 1489-1496. 

  3. Brink, M., Wellen, J. and Delafontaine, P. 1996. Angiotensin II causes weight loss and decreases circulating insulin-like growth factor I in rats through a pressor-independent mechanism. J. Clin. Invest. 97, 2509-2516. 

  4. Cohn, R. D., van Erp, C., Habashi, J. P., Soleimani, A. A., Klein, E. C., Lisi, M. T., Gamradt, M., ap Rhys, C.M., Holm, T. M., Loeys, B. L., Ramirez, F., Judge, D. P., Ward, C. W. and Dietz, H. C. 2007. Angiotensin II type 1 receptor blockade attenuates TGF-beta-induced failure of muscle regeneration in multiple myopathic states. Nat. Med. 13, 204-210. 

  5. Delmonico, M. J., Kostek, M. C., Doldo, N. A., Hand, B. D., Walsh, S., Conway, J. M., Carignan, C. R., Roth, S. M. and Hurley, B. F. 2007. Alpha-actinin-3 (ACTN3) R577X polymorphism influences knee extensor peak power response to strength training in older men and women. J. Gerontol. A Biol. Sci. Med. Sci. 62, 206-212. 

  6. Druzhevskaya, A. M., Ahmetov, I. I., Astratenkova, I. V. and Rogozkin. V. A. 2008. Association of the ACTN3 R577X polymorphism with power athlete status in Russians. Eur. J. Appl. Physiol. 103, 631-634. 

  7. Dzau, V. J., Gibbons, G. H. and Pratt, R. E. 1991. Molecular mechanisms of vascular renin-angiotensin system in myointimal hyperplasia. Hypertension 18, II100-105. 

  8. Eynon, N., Alves, A. J., Meckel, Y., Yamin, C., Ayalon, M., Sagiv, M. and Sagiv, M. 2010. Is the interaction between HIF1A P582S and ACTN3 R577X determinant for power/ sprint performance? Metabolism 59, 861-865. 

  9. Fagard, R. H. 1997. Impact of different sports and training on cardiac structure and function. Cardiol. Clin. 15, 397-412. 

  10. Frey, N., Richardson, J. A. and Olson, E. N. 2000. Calsarcins, a novel family of sarcomeric calcineurin-binding proteins. Proc. Natl. Acad. Sci. USA 97, 14632-14637. 

  11. Gomez-Gallego, F., Santiago, C., Gonzalez-Freire, M., Muniesa, C. A., Fernandez Del Valle, M., Perez, M., Foster, C. and Lucia, A. 2009. Endurance performance: genes or gene combinations? Int. J. Sports Med. 30, 66-72. 

  12. Hagberg, J. M., Rankinen, T., Loos, R. J., Perusse, L., Roth, S. M., Wolfarth, B. and Bouchard, C. 2011. Advances in exercise, fitness, and performance genomics in 2010. Med. Sci. Sports Exerc. 43, 743-752. 

  13. Henriksen, E. J. and Jacob, S. 2003. Modulation of metabolic control by angiotensin converting enzyme (ACE) inhibition. J. Cell Physiol. 196, 171-179. 

  14. Hughes, D. C., Day, S. H., Ahmetov, I. I. and Williams, A. G. 2011. Genetics of muscle strength and power: polygenic profile similarity limits skeletal muscle performance. J. Sports Sci. 29, 1425-1434. 

  15. Kasikcioglu, E., Kayserilioglu, A., Ciloglu, F., Akhan, H., Oflaz, H., Yildiz, S. and Peker, I. 2004. Angiotensin-converting enzyme gene polymorphism, left ventricular remodeling, and exercise capacity in strength-trained athletes. Heart Vessels 19, 287-293. 

  16. Kim, C. H., Cho, J. Y., Jeon, J. Y., Koh, Y. G., Kim, Y. M., Kim, H. J., Park, M., Um, H. S. and Kim, C. 2010. ACE DD genotype is unfavorable to Korean short-term muscle power athletes. Int. J. Sports Med. 31, 65-71. 

  17. Koch, W., Latz, W., Eichinger, M., Ganser, C., Schomig, A. and Kastrati, A. 2005. Genotyping of the angiotensin I-converting enzyme gene insertion/deletion polymorphism by the TaqMan method. Clin. Chem. 51, 1547-1549. 

  18. Koh, T. J. and Tidball, J. G. 1999. Nitric oxide synthase inhibitors reduce sarcomere addition in rat skeletal muscle. J. Physiol. 519 Pt 1, 189-196. 

  19. Longhurst, J. C. and Stebbins, C. L. 1997. The power athlete. Cardiol. Clin. 15, 413-429. 

  20. Macarthur, D. G. and North, K. N. 2005. Genes and human elite athletic performance. Hum. Genet. 116, 331-339. 

  21. MacArthur, D. G. and North, K. N. 2004. A gene for speed? The evolution and function of alpha-actinin-3. Bioessays 26, 786-795. 

  22. MacArthur, D. G., Seto, J. T., Raftery, J. M., Quinlan, K. G., Huttley, G. A., Hook, J. W., Lemckert, F. A., Kee, A. J., Edwards, M. R., Berman, Y., Hardeman, E. C., Gunning, P. W., Easteal, S., Yang, N. and North, K. N. 2007. Loss of ACTN3 gene function alters mouse muscle metabolism and shows evidence of positive selection in humans. Nat. Genet. 39, 1261-1265. 

  23. Montgomery, H., Clarkson, P., Barnard, M., Bell, J., Brynes, A., Dollery, C., Hajnal, J., Hemingway, H., Mercer, D., Jarman, P., Marshall, R., Prasad, K., Rayson, M., Saeed, N., Talmud, P., Thomas, L., Jubb, M., World, M. and Humphries, S. 1999. Angiotensin-converting-enzyme gene insertion/deletion polymorphism and response to physical training. Lancet 353, 541-545. 

  24. Mori, S. and Tokuyama, K. 2007. Variation in ACE activity affects myogenic differentiation in C2C12 cells. Biochem. Biophys. Res. Commun. 353, 369-375. 

  25. North, K. N., Yang, N., Wattanasirichaigoon, D., Mills, M., Easteal, S. and Beggs, A. H. 1999. A common nonsense mutation results in alpha-actinin-3 deficiency in the general population. Nat. Genet. 21, 353-354. 

  26. Papadimitriou, I. D., Papadopoulos, C., Kouvatsi, A. and Triantaphyllidis, C. 2008. The ACTN3 gene in elite Greek track and field athletes. Int. J. Sports Med. 29, 352-355. 

  27. Powers, S. K. and Dodd, S. L. 2009. Total Fitness and Wellness. Pearson Benjamin Cummings, San Francisco. 

  28. Puthucheary, Z., Skipworth, J. R., Rawal, J., Loosemore, M., Van Someren, K. and Montgomery, H. E. 2011. The ACE gene and human performance: 12 years on. Sports Med. 41, 433-448. 

  29. Puthucheary, Z., Skipworth, J. R., Rawal, J., Loosemore, M., Van Someren, K. and Montgomery, H. E. 2011. Genetic influences in sport and physical performance. Sports Med. 41, 845-859. 

  30. Rigat, B., Hubert, C., Alhenc-Gelas, F., Cambien, F., Corvol, P. and Soubrier, F. 1990. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J. Clin. Invest. 86, 1343-1346. 

  31. Rigat, B., Hubert, C., Corvol, P. and Soubrier, F. 1992. PCR detection of the insertion/deletion polymorphism of the human angiotensin converting enzyme gene (DCP1) (dipeptidyl carboxypeptidase 1). Nucleic Acids Res. 20, 1433. 

  32. Rodriguez-Romo, G., Ruiz, J. R., Santiago, C., Fiuza-Luces, C., Gonzalez-Freire, M., Gomez-Gallego, F., Moran, M. and Lucia, A. 2010. Does the ACE I/D polymorphism, alone or in combination with the ACTN3 R577X polymorphism, influence muscle power phenotypes in young, non-athletic adults? Eur. J. Appl. Physiol. 110, 1099-1106. 

  33. Roth, S. M., Walsh, S., Liu, D., Metter, E. J., Ferrucci, L. and Hurley, B. F. 2008. The ACTN3 R577X nonsense allele is under-represented in elite-level strength athletes. Eur. J. Hum. Genet. 16, 391-394. 

  34. Ruiz, J. R., Arteta, D., Buxens, A., Artieda, M., Gomez-Gallego, F., Santiago, C., Yvert, T., Moran, M. and Lucia, A. 2010. Can we identify a power-oriented polygenic profile? J. Appl. Physiol. 108, 561-566. 

  35. Ruiz, J. R., Fernandez del Valle, M., Verde, Z., Diez-Vega, I., Santiago, C., Yvert, T., Rodriguez-Romo, G., Gomez-Gallego, F., Molina, J. J. and Lucia, A. 2011. ACTN3 R577X polymorphism does not influence explosive leg muscle power in elite volleyball players. Scand. J. Med. Sci. Sports. 21, e34-41. 

  36. Russell, S. T., Sanders, P. M. and Tisdale, M .J. 2006. Angiotensin II directly inhibits protein synthesis in murine myotubes. Cancer Lett. 231, 290-294. 

  37. Sanders, P. M., Russell, S. T. and Tisdale, M. J. 2005. Angiotensin II directly induces muscle protein catabolism through the ubiquitin-proteasome proteolytic pathway and may play a role in cancer cachexia. Br. J. Cancer 93, 425-434. 

  38. Santiago, C., Rodriguez-Romo, G., Gomez-Gallego, F., Gonzalez-Freire, M., Yvert, T., Verde, Z., Naclerio, F., Altmae, S., Esteve-Lanao, J. R., Ruiz, J. and Lucia, A. 2010. Is there an association between ACTN3 R577X polymorphism and muscle power phenotypes in young, non-athletic adults? Scan. J. Med.Sci. Sports 20, 771-778. 

  39. Santiago, C., Ruiz, J. R., Muniesa, C. A., Gonzalez-Freire, M., Gomez-Gallego, F. and Lucia, A. 2010. Does the polygenic profile determine the potential for becoming a world-class athlete? Insights from the sport of rowing. Scand. J. Med. Sci. Sports 20, e188-94. 

  40. Song, Y. H., Li, Y., Du, J., Mitch, N. Rosenthal, and Delafontaine, P. 2005. Muscle-specific expression of IGF-1 blocks angiotensin II-induced skeletal muscle wasting. J. Clin. Invest. 115, 451-458. 

  41. Soubrier, F., Wei, L., Hubert, C., Clauser, E., Alhenc-Gelas, F. and Corvol, P. 1993. Molecular biology of the angiotensin I converting enzyme: II. Structure-function. Gene polymorphism and clinical implications. J. Hypertens 11, 599-604. 

  42. Taniwaki, H., Ishimura, E., Matsumoto, N., Emoto, E., Inaba, M. and Nishizawa, Y. 2001. Relations between ACE gene and ecNOS gene polymorphisms and resistive index in type 2 diabetic patients with nephropathy. Diabetes Care 24, 1653-1660. 

  43. Thomis, M. A., Huygens, W., Heuninckx, S., Chagnon, M., Maes, H. H., Claessens, A. L., Vlietinck, R., Bouchard, C. and Beunen, G. P. 2004. Exploration of myostatin polymorphisms and the angiotensin-converting enzyme insertion/ deletion genotype in responses of human muscle to strength training. Eur. J. Appl. Physiol. 92, 267-274. 

  44. Tsianos, G. I., Evangelou, E., Boot, A., Zillikens, M. C., van Meurs, J. B., Uitterlinden, A. G. and Ioannidis, J. P. 2010. Associations of polymorphisms of eight muscle- or metabolism-related genes with performance in Mount Olympus marathon runners. J. Appl. Physiol. 108, 567-574. 

  45. Walsh, S., Liu, D., Metter, E. J., Ferrucci, L. and Roth, S. M. 2008. ACTN3 genotype is associated with muscle phenotypes in women across the adult age span. J. Appl. Physiol. 105, 1486-1491. 

  46. Williams, A. G. and Folland, J. P. 2008. Similarity of polygenic profiles limits the potential for elite human physical performance. J. Physiol. 586, 113-121. 

  47. Yang, N., Garton, F. and North, K. 2009. Alpha-Actinin-3 and Performance. Med. Sport. Sci. 54, 88-101. 

  48. Yang, N., MacArthur, D. G., Gulbin, J. P., Hahn, A. G., Beggs, A. H., Easteal, S. and North, K. 2003. ACTN3 genotype is associated with human elite athletic performance. Am. J. Hum. Genet. 73, 627-631. 

  49. Yang, N., Schindeler, A., McDonald, M. M., Seto, J. T., Houweling, P. J., Lek, M. Hogarth, M., Morse, A. R., Raftery, J. M. Balasuriya, D., MacArthur, D. G., Berman, Y., Quinlan, K. G., Eisman, J. A., Nguyen, T. V., Center, J. R., Prince, R. L., Wilson, S. G., Zhu, K., Little, D. G. and North, K. N. 2011. alpha-Actinin-3 deficiency is associated with reduced bone mass in human and mouse. Bone 49, 790-798. 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로