$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Identifying and quantitating defects on chemical vapor deposition grown graphene layers by selected electrochemical deposition of Au nanoparticles 원문보기

Carbon letters, v.13 no.1, 2012년, pp.56 - 59  

So, Hye-Mi (National Nanofab Center) ,  Mun, Jeong-Hun (Department of Electrical Engineering, Korea Advanced Institute of Science and Technology) ,  Bang, Gyeong-Sook (National Nanofab Center) ,  Kim, Taek-Yong (Department of Electrical Engineering, Korea Advanced Institute of Science and Technology) ,  Cho, Byung-Jin (Department of Electrical Engineering, Korea Advanced Institute of Science and Technology) ,  Ahn, Chi-Won (National Nanofab Center)

Abstract AI-Helper 아이콘AI-Helper

The defect sites on chemical vapor deposition grown graphene are investigated through the selective electrochemical deposition (SED) of Au nanoparticles. For SED of Au nanoparticles, an engineered potential pulse is applied to the working electrode versus the reference electrode, thereby highlightin...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • In this work, we have quantitatively investigated the defects on large size, high quality graphene layers grown by the CVD method via SED of Au nanoparticles. By adjusting the potential applied to the graphene, selective deposition of Au nanoparticles on specific defect sites was achieved.

대상 데이터

  • Employing a multi-potential system, we controlled both the nanoparticle size and packing density. A droplet of HAuCl4 in 100 mM KCl (supporting electrolyte) was placed on the device and transferred graphene was used as a working electrode. A reduction potential was then applied with respect to an Ag|AgCl|KCl (3M) reference electrode with current monitoring using a Pt counter-electrode.
본문요약 정보가 도움이 되었나요?

참고문헌 (21)

  1. Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, De Heer WA. Electronic confinement and coherence in patterned epitaxial graphene. Science, 312, 1191 (2006). http://dx.doi.org/10.1126/science.1125925. 

  2. Virojanadara C, Syvajarvi M, Yakimova R, Johansson LI, Zakharov AA, Balasubramanian T. Homogeneous large-area graphene layer growth on 6H-SiC(0001). Phys Rev B, 78, 245403 (2008). http://dx.doi.org/10.1103/PhysRevB.78.245403. 

  3. Emtsev KV, Bostwick A, Horn K, Jobst J, Kellogg GL, Ley L, McChesney JL, Ohta T, Reshanov SA, Rohrl J, Rotenberg E, Schmid AK, Waldmann D, Weber HB, Seyller T. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature Mater, 8, 203 (2009). http://dx.doi.org/10.1038/nmat2382. 

  4. Obraztsov AN, Obraztsova EA, Tyurnina AV, Zolotukhin AA. Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon, 45, 2017 (2007). http://dx.doi.org/10.1016/j.carbon.2007.05.028. 

  5. Yu Q, Lian J, Siriponglert S, Li H, Chen YP, Pei SS. Graphene segregated on Ni surfaces and transferred to insulators. Appl Phys Lett, 93, 113103 (2008). http://dx.doi.org/10.1063/1.2982585. 

  6. Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Jing K. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett, 9, 30 (2009). http://dx.doi.org/10.1021/nl801827v. 

  7. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Ahn JH, Kim P, Choi JY, Hong BH. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457, 706 (2009). http://dx.doi.org/10.1038/nature07719. 

  8. Kang BJ, Mun JH, Hwang CY, Cho BJ. Monolayer graphene growth on sputtered thin film platinum. J Appl Phys, 106, 104309 (2009). http://dx.doi.org/10.1063/1.3254193. 

  9. Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 324, 1312 (2009). http://dx.doi.org/10.1126/science.1171245. 

  10. Li X, Wang X, Zhang L, Lee S, Dai H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science, 319, 1229 (2008). http://dx.doi.org/10.1126/science.1150878. 

  11. Li X, Zhang G, Bai X, Sun X, Wang X, Wang E, Dai H. Highly conducting graphene sheets and Langmuir-Blodgett films. Nature Nanotechnol, 3, 538 (2008). http://dx.doi.org/10.1038/nnano.2008.210. 

  12. Eda G, Fanchini G, Chhowalla M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotechnol, 3, 270 (2008). http://dx.doi.org/10.1038/nnano.2008.83. 

  13. Li D, Muller MB, Gilje S, Kaner RB, Wallace GG. Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnol, 3, 101 (2008). http://dx.doi.org/10.1038/nnano.2007.451. 

  14. Bae S, Kim H, Lee Y, Xu X, Park JS, Zheng Y, Balakrishnan J, Lei T, Ri Kim H, Song YI, Kim YJ, Kim KS, Ozyilmaz B, Ahn JH, Hong BH, Iijima S. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnol, 5, 574 (2010). http://dx.doi.org/10.1038/nnano.2010.132. 

  15. Zach MP, Ng KH, Penner RM. Molybdenum nanowires by electrodeposition. Science, 290, 2120 (2000). http://dx.doi.org/10.1126/science.290.5499.2120. 

  16. Penner RM. Mesoscopic metal particles and wires by electrodeposition. J Phys Chem B, 106, 3339 (2002). http://dx.doi.org/10.1021/jp013219o. 

  17. Walter EC, Zach MP, Favier F, Murray BJ, Inazu K, Hemminger JC, Penner RM. Metal nanowire arrays by electrodeposition. Chem Phys Chem, 4, 131 (2003). http://dx.doi.org/10.1002/cphc.200390022. 

  18. Banks CE, Davies TJ, Wildgoose GG, Compton RG. Electrocatalysis at graphite and carbon nanotube modified electrodes: edgeplane sites and tube ends are the reactive sites. Chem Commun, 7, 829 (2005). http://dx.doi.org/10.1039/b413177k. 

  19. Fan Y, Goldsmith BR, Collins PG. Identifying and counting point defects in carbon nanotubes. Nature Mater, 4, 906 (2005). http://dx.doi.org/10.1038/nmat1516. 

  20. Mubeen S, Zhang T, Chartuprayoon N, Rheem Y, Mulchandani A, Myung NV, Deshusses MA. Sensitive detection of H2S using gold nanoparticle decorated single-walled carbon nanotubes. Anal Chem, 82, 250 (2010). http://dx.doi.org/10.1021/ac901871d. 

  21. Kim YT, Han JH, Hong BH, Kwon YU. Electrochemical Synthesis of CdSe quantum-Dot arrays on a graphene basal plane using mesoporous silica thin-film templates. Adv Mater, 22, 515 (2010). http://dx.doi.org/10.1002/adma.200902736. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로