$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

초록
AI-Helper 아이콘AI-Helper

친환경 농법이 대두되면서 식물 병원균에 대한 길항능과 식물생장 촉진능을 동시에 가지는 plant growth promoting rhizobacterium (PGRP)을 이용해 식물병을 방제하는 미생물 농법이 선호되고 있다. 본 연구에서는 토양비옥도 지표효소로 알려진 5종의 토양효소활성 측정을 이용해 plant growth promoting rhizobacterium 균주인 Bacillus subtilis AH18, Bacillus licheniformis K11, Pseudomonas fluorescens 2112를 조합한 복합미생물제제와 시판중인 미생물농약, 화학농약을 처리한 고추경작지에서 토양미생물상을 분석하고 고추의 생장 및 수확량을 측정하여 메타지노믹스를 이용한 토양미생물 다양성 연구의 기초자료로 사용하고자 하였다. 토양효소활성의 측정에서 복합미생물제제 처리구가 dehydrogenase 3.5584 ${\mu}g$ TPF $g^{-1}h^{-1}$, urease 15.8689 ${\mu}g$ $NH_4{^-}N$ $g^{-1}h^{-1}$, phosphatase 0.5692 ${\mu}g$ PNP $g^{-1}h^{-1}$, ${\beta}$-glucosidase 2.4785 ${\mu}g$ PNP $g^{-1}h^{-1}$, cellulase 86.1597 ${\mu}g$ glucose $g^{-1}h^{-1}$의 수치를 나타내 타처리구보다 높은 활성을 보여 토양미생물상의 다양성이 증대됨을 확인하였다. 또한, 고추의 생장촉진도측정에서 복합미생물제제가 타처리구에 비해 주경장에서 최대 6.1%, 경경에서 최대 8.1%의 생장촉진능을 보여 복합미생물제제의 생장촉진능을 확인하였다. 생고추의 수확량 측정에서는 복합미생물제제가 무처리구를 기준으로 했을 때 14%의 수확량 증대효과를 나타내었고, 화학농약 처리구보다도 7.3%의 증대효과를 나타내어 복합미생물제제에 의한 수확량 증대효과도 확인하였다. 따라서 본 연구에 사용된 복합 미생물컨소시움제제가 고추경작지 토양의 미생물상 다양성 증가와 고추의 생장촉진 및 수확량 향상 모두에 기여함을 알 수 있었다.

Abstract AI-Helper 아이콘AI-Helper

Increasing concerns over green farming technology, plant growth promoting rhizobacterium (PGRP) having growth promoting as well as plant disease suppressing properties was recently preferred to use for biological control of plant pathogens infecting plant. We measured the influence of the selected m...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 따라서 본 연구는 길항미생물을 이용하여 최적 컨소시엄제제로 이미 개발된(Lim 등, 2009) 복합미생물제제의 토양미생물생태 변화를 토양효소 활성도 측정으로 확인하고자 하였으며, 대조구로 시판중인 미생물농약과 화학농약을 처리한 고추경작지에서의 토양효소활성 비교분석을 통해 메타지노믹스를 이용한 토양미생물 다양성 연구의 기본연구자료로 사용하고, 고추의 생장과 수확량 측정을 통해 미생물의 처리가 작물에 미치는 효과를 확인하고자 수행되었다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
토양생태계의 건전성 평가하는 방법은 무엇인가? 토양미생물군집의 생태를 분석하기 위한 방법 중 토양효소 활성도 측정은 토양비옥도를 반영하여 토양질의 중요한 생물지표가 되는데(Paul과 Clark, 1989; Anderson, 1991; Kirschbaum, 1995; Nobili 등, 2006; Hu와 Cao, 2007; Koch 등, 2007), 주변 환경 여건에 따라 토양미생물의 상대적 활력도가 달라지므로 특정 효소활성을 측정함으로써 토양미생물의 상대적 활성을 측정하고 이를 기준으로 토양생태계의 건전성을 평가할 수 있다(Speir 등, 1999; Chew 등, 2001; Langer와 Günther,2001). 그 중 dehydrogenase는 토양호흡의 지수로 사용되고(Garcia 와 Hernandez, 1997), urease는 토양 내 미생물들이 이용할 수 있는 질소원을 공급하는 역할을 한다(Garcia-Gil 등, 2000).
plant growth promoting rhizobacterium(PGPR) 균주란? 최근에는 식물병원균에 대한 길항능과 식물생장촉진능을 동시에 가지는 plant growth promoting rhizobacterium(PGPR) 균주에 대한 연구가 활발히 진행되고 있다(Jung 등, 2006; 2007). PGPR은 식물뿌리주변에 서식하는 근권미생물로서 식물병원성 진균의 세포벽을 분해하는 용균작용(Lim과 Kim, 1995; Han 등, 1999; Yun 등, 2001), Bacillus sp., Pseudomonas sp.
plant growth promoting rhizobacterium(PGPR) 균주의 기능은 무엇인가? 최근에는 식물병원균에 대한 길항능과 식물생장촉진능을 동시에 가지는 plant growth promoting rhizobacterium(PGPR) 균주에 대한 연구가 활발히 진행되고 있다(Jung 등, 2006; 2007). PGPR은 식물뿌리주변에 서식하는 근권미생물로서 식물병원성 진균의 세포벽을 분해하는 용균작용(Lim과 Kim, 1995; Han 등, 1999; Yun 등, 2001), Bacillus sp., Pseudomonas sp.등이 생산하는 항생물질에 의해 식물병원성 진균의 생육을 저해하는 항생작용(Kim과 Kim, 1997; Jeong 등, 2004; Jung과 Kim, 2004)등과 같은 길항능과, 식물과의 상호작용을 통한 식물생장촉진능(Lim 등, 2009)을 가진다. PGPR 균주의 식물병 억제효과와 식물생장촉진능을 동시에 발휘하게하기 위해선 식물병 억제와 생장촉진 효과가 필요한 기간만큼 지속적으로 토양에서 살아남아야 하지만, 토양에 접종된 미생물은 짧은 시간 내에 그 수가 줄어들고, 토양미생물 군락도 원래의 상태대로 복원된다(Van Veen 등, 1997; Thirup 등, 2003; Park 등, 2009).
질의응답 정보가 도움이 되었나요?

참고문헌 (41)

  1. Anderson JM (1991) The effects of climate change on decomposition processes in grassland and coniferous forests. Ecol Appl 1, 326-437. 

  2. Baek MH (2003) Assessment of soil environment risk with use of soil microbes at the undustrial complex. Graduate School, Sunchon National University, Suncheon, Korea. 

  3. Chew I, Obbard JP, and Stanforth RR (2001) Microbial cellulose decomposition in soils from a rifle range contaminated with heavy metals. Env Sci 111, 367-375. 

  4. Choi MY (2003) Microbial diversity on an industrialized and agricultural district. Graduate School, Yosu National University, Yosu, Korea. 

  5. Debosz K, Rasmussen PH, and Pedersen AR (1999) Temporal variations in microbial biomass C and cellulolytic enzyme activity in arable soils effects of organic matter input. Appl Soil Ecol 13, 209-218. 

  6. Eivazi F and Tabatabai MA (1988) Glucosidases and agalactosidases in soils. Soil Biol Biochem 20, 601-606. 

  7. Garcia C and Hernandez T (1997) Biological and biochemical indicators in derelict soils subject to erosion. Soil Biol Biochem 29, 171-177. 

  8. Garcia-Gil JC, Plaza P, Soler-Rovira P, and Polo A (2000) Long-term effects on municipal solid waste compost application on soil enzyme activities and microbial biomass. Soil Biol Biochem 32, 1907-1913. 

  9. Han KH, Lee CU, and Kim SD (1999) Antagonistic role of chitinase and antibiotic produced by Promicromonospora sp. KH-28 toward F. oxysporum. Korean J Appl Microbial Biotechnol 27, 349-353. 

  10. Hu C and Cao Z (2007) Size and activity of the soil microbial biomass and soil enzyme activity in long-term field experiments. World J Agri Sci 3, 63-70. 

  11. Jeong DH, Park KD, Kim SH, Kim KR, Choi SW, Kim JT, Choi KH, and Kim JH (2004) Identification of Streptomyces sp. producing antibiotics against phytopathogenic fungi, and its structure. J Microbiol Biotechnol 14, 212-215. 

  12. Joa JH, Lee JH, Won HY, Han SG, and Lim HC (2008) Effect of different soil managements on physical properties and microbial activities in citrus orchard soil. Korean J Soil Sci Fert 41, 279-284. 

  13. Joa JH, Moon DG, Chun SJ, Kim CH, Choi KS, Hyun HN, and Kang UG (2009) Effect of temperature on soil microbial biomass, enzyme activities, and PLFA content during incubation peroid of soil treated with organic materials. Korean J Soil Sci Fert 42, 500-512. 

  14. Jung HK and Kim SD (2004) Selection and antaginistic mechanism of Pseudomonas fluorescens 4059 against phytophthora blight disease. Korean J Microbiol Biotechnol 32, 312-316. 

  15. Jung HK, Kim JR, Woo SM, and Kim SD (2006) An auxin producing plant growth promoting rhizobacterium Bacillus subtilis AH18 which has siderophore-producing biocontol activity. Korean J Microbiol Biotechnol 34, 94-100. 

  16. Jung HK, Kim JR, Woo SM, and Kim SD (2007) Selection of the auxin, siderophore, and cellulase-producing PGPR, Bacillus licheniformis K11 and its plant growth promoting mechanisms. J Korean Soc Appl Biol Chem 50, 23-28. 

  17. Jung HK, Ryoo JC, and Kim SD (2005) A multimicrobial biofungicide for the biological control against several important plant pathogenic fungi. J Korean Soc Appl Biol Chem 48, 40-47. 

  18. Kang SJ, Kim JH, and Joo GJ (2005) Isolation of antagonistic bacteria against Fusarium oxysporum and physicochemical properties of compost mixed with microbial formulation. Korean J Hort Sci Technol 23, 342-350. 

  19. Kim KY and Kim SD (1997) Biological control of Pyricularia aryzae blast spot with the antibiotic substances produced by Bacillus sp. KL-3. Korean J Appl Microbiol Biotechnol 25, 396-402. 

  20. Kirschbaum MUF (1995) The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biol Biochem 31, 205-211. 

  21. Koch O, Tscherko D, and Kandeler E (2007) Temperature sensitivity of microbial respiration, nitrogen mineralization, and potential soil enzyme activities in organic alpine soils. Glob Biogeochem Cycles 21, GB4017. 

  22. Kwon YT (2008) Capsicum annuum manual. Yeongyang-gun Agriculture Extension Center, Korea. 

  23. Langer U and Gunther Th (2001) Effects of alkaline dust deposits from phosphate fertilizer production on microbial biomass and enzyme activities in grassland soils. Env Pollution 112, 321-327. 

  24. Lee ET and Kim SD (2000) Selection and antifungal activity of antagonistic bacterium Pseudomonas sp. 2112 against red-pepper rotting Phytophthora capsici. Korean J Appl Microbiol Biotechnol 28, 334-340. 

  25. Lee JM, Do ES, Baik SB, and Chun SC (2003) Effect of organic amendments on efficacy of biological control of seedling damping-off of cucumber with several microbial products. Korean J Mycol 31, 44-49. 

  26. Lim HS and Kim SD (1995) The role and characterization of ${\beta}$ -1,3-glucanase in biocontrol of Fusarium solani by Pseudomonas stutzeri. J Microbiol 33, 295-304. 

  27. Lim JH, Jung HY, and Kim SD (2009) Development of the microbial consortium for the environmental friendly agriculture by the antagonistic rhizobacteria. J Appl Biol Chem 52, 116-120. 

  28. Nobili DM, Contin M, and Brookes PC (2006) Microbial biomass dynamics in recently air-dry for up to 103 years. Soil Biol Biochem 38, 2871-2881. 

  29. Pancholy SK and Rice EL (1973) Soil enzymes in relation to old field succession: amylase, cellulase, invertase, dehydrogenase and urease. Soil Sci Soc Am Proc 37, 47-50. 

  30. Park KC, Lim JH, Kim SD, and Yi YK (2009) Effects of phytophthora blightantagonistic Microorganisms Bacillus subtilis AH18 and Bacillus licheniformis K11 on the soil microbail community. J Appl Biol Chem 52, 121-125. 

  31. Paul EA and Clark FE (1989) Soil microbiology and biochemistry. Academic press, San Diego, CA. 

  32. Pusey PL (1996) Micro-organism as agents in plant disease control. Crop Protection Agents from Nature: Natural Products and Analogues. Crit Rep Appl Chem 35, 426-436. 

  33. Rai B and Srivastava AK (1983) Decomposition and competitive colonization litter by fungi. Soil Biol Biochem 15, 115-117. 

  34. Ross DJ (1970) Effects of storage on dehydrogenase activity of soils. Soil Biol Biochem 2, 55-61. 

  35. Sardans J, Penuelas J, and Estiarte M (2008) Changes in soil enzymes related to C and N cycle and in soil C and N content under prolonged warming and drought in a Mediterranean shrubland. Appl Soil Ecol 39, 223-235. 

  36. Speir TW, Kettles HA, Percival HJ, and Parshotam A (1999) Is soil acidification the cause of biochemical responses when soils are amended with heavy metal salts? Soil Biol Biochem 31, 1953-1961. 

  37. Thirup L, Johansen A, and Winding A (2003) Microbial succession in the rhizosphere of live and decomposing barley roots as affected by the antagonistic strain Pseudomonas fluorescens DR54-BN14 or the fungicide imazalil. FEMS Microb Ecol 43, 383-392. 

  38. Trevors JT, Mayfield CI, and Inniss WE (1982) Measurement of electron transport system (ETS) activity in soil. Microb Ecol 8, 163-168. 

  39. Trevors JT (1984) Dehydrogenase activity in soil: A comparison between the INT and TTC assay. Soil Biol Biochem 16, 673-674. 

  40. Van Veen JA, Van Overbeek LS, and Van Elsas JD (1997) Fate and activity of microorganism introduced into soil. Microbiol Mol Rev 61, 121-135. 

  41. Yun GH, Lee ET, and Kim SD (2001) Identification and antifungal antagonism of Chryseomonas luteola 5042 against Phytophthora capsici. Korean J Appl Microbial Biotechnol 29, 186-193. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로