$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Members of Ectocarpus siliculosus F-box Family Are Subjected to Differential Selective Forces 원문보기

Interdisciplinary Bio Central, v.4 no.1, 2012년, pp.1.1 - 1.7  

Mahmood, Niaz (Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka) ,  Moosa, Mahdi Muhammad (Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka) ,  Matin, S. Abdul (DataSoft Systems Bangladesh Limited) ,  Khan, Haseena (Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka)

Abstract AI-Helper 아이콘AI-Helper

Background: The F-box proteins represent one of the largest families of proteins in eukaryotes. Apart from being a component of the ubiquitin (Ub)/26 S proteasome pathways, their regulatory roles in other cellular and developmental pathways have also been reported. One interesting feature of the gen...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • Then domain annotation of all the 16,256 proteins of E. siliculosus was done by the standalone version of InterProScan43, and F-box proteins were screened by searching for the domains IPR001810, PTHR14289, PTHR22844, PTHR23123, PTHR23125 and SSF81383 using an in-house perl script (Additional File : ‘protein_search.pl’).

이론/모형

  • siliculosus F-box proteins. Multiple alignments of the full length F-box protein sequences were done by Clustal X version 2.041 and phylogenetic tree was generated by MEGA 4.1 using neighbor-joining method. The proteins from FBXW, FBXL and FBXO families are shown in yellow, blue and red, respectively.
  • Phylogenetic tree was constructed using the neighbor-joining method45 with bootstrap multiple alignment resampling set at 10,000 using Molecular Evolutionary Genetics Analysis (MEGA) software version 4.146. Uniform rates among sites and pairwise deletion of gaps was assumed for the analysis.
  • Synonymous and non-synonymous substitution pattern was determined using the modified Nei-Gojobori47 method with the Jukes-Cantor correction as implemented in MEGA4.146.
  • So they have different localization signals which cannot be accurately predicted by the conventional algorithms. To address this issue, heterokont specific sub-cellular localization prediction tool known as HECTAR was used during this study. Out of the 48 proteins, 46 had no Nterminal target peptide as predicted by HECTAR.
본문요약 정보가 도움이 되었나요?

참고문헌 (47)

  1. Smalle, J., and Vierstra, R.D. (2004). The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol 55, 555-590. 

  2. Stone, S.L., and Callis, J. (2007). Ubiquitin ligases mediate growth and development by promoting protein death. Curr Opin Plant Biol 10, 624-632. 

  3. Feldman, R., Correll, C.C., Kaplan, K.B., and Deshaies, R.J. (1997). A complex of Cdc4p, Skp1p, and Cdc53p/cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p. Cell 91, 221-230. 

  4. Cardozo, T., and Pagano, M. (2004). The SCF ubiquitin ligase: insights into a molecular machine. Nat Rev Mol Cell Biol 5, 739-751. 

  5. Schulman, B.A., Carrano, A.C., Jeffrey, P.D., Bowen, Z., Kinnucan, E.R.E., Finnin, M.S., Elledge, S.J., Harper, J.W., Pagano, M., and Pavletich, N.P. (2000). Insights into SCF ubiquitin ligases from the structure of the Skp1-Skp2 complex. Nature 408, 381-386. 

  6. Cao, P.R., Kim, H.J., and Lecker, S.H. (2005). Ubiquitin-protein ligases in muscle wasting. The Int J Biochem Cell Biol 37, 2088-2097. 

  7. Bai, C., Sen, P., Hofmann, K., Ma, L., Goebl, M., Harper, J.W., and Elledge, S.J. (1996). SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 86, 263-274. 

  8. Clifford, R., Lee, M.H., Nayak, S., Ohmachi, M., Giorgini, F., and Schedl, T. (2000). FOG-2, a novel F-box containing protein, associates with the GLD-1 RNA binding protein and directs male sex determination in the C. elegans hermaphrodite germline. Development 127, 5265-5276. 

  9. Galan, J.M., Wiederkehr, A., Seol, J.H., Haguenauer-Tsapis, R., Deshaies, R.J., Riezman, H., and Peter, M. (2001). Skp1p and the F-box protein Rcy1p form a non-SCF complex involved in recycling of the SNARE Snc1p in yeast. Mol Cell Biol 21, 3105-3117. 

  10. Smaldone, S., Laub, F., Else, C., Dragomir, C., and Ramirez, F. (2004). Identification of MoKA, a novel F-box protein that modulates Kruppellike transcription factor 7 activity. Mol Cell Biol 24, 1058-1069. 

  11. Levin, J.Z., and Meyerowitz, E.M. (1995). UFO: an Arabidopsis gene involved in both floral meristem and floral organ development. Plant Cell 7, 529-548. 

  12. Samach, A., Klenz, J.E., Kohalmi, S.E., Risseeuw, E., Haughn, G.W., and Crosby, W.L. (1999). The UNUSUAL FLORAL ORGANS gene of Arabidopsis thaliana is an F box protein required for normal patterning and growth in the floral meristem. Plant J 20, 433-445. 

  13. Yoon, H.S., Hackett, J.D., Ciniglia, C., Pinto, G., and Bhattacharya, D. (2004). A molecular timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol 21, 809-818. 

  14. Lau, S., Jurgens, G., and De Smet, I. (2008). The evolving complexity of the auxin pathway. Plant Cell 20, 1738-1746. 

  15. Baldauf, S.L. (2008). An overview of the phylogeny and diversity of eukaryotes. J Syst Evol 46, 263-273. 

  16. Simon, D., and Sylvie, R. (2011). Microarray estimation of genomic inter- strain variability in the genus Ectocarpus (Phaeophyceae). BMC Mol Biol 12, 1-12. 

  17. Le Bail, A., Billoud, B., Kowalczyk, N., Kowalczyk, M., Gicquel, M., Le Panse, S., Stewart, S., Scornet, D., Cock, J.M., and Ljung, K. (2010). Auxin metabolism and function in the multicellular brown alga Ectocarpus siliculosus. Plant Physiol 153, 128-144. 

  18. Thomas, J.H. (2006). Adaptive evolution in two large families of ubiquitin- ligase adapters in nematodes and plants. Genome Res 16, 1017- 1030. 

  19. Clark, R.M., Schweikert, G., Toomajian, C., Ossowski, S., Zeller, G., Shinn, P., Warthmann, N., Hu, T.T., Fu, G., and Hinds, D.A. (2007). Common sequence polymorphisms shaping genetic diversity in Arabidopsis thaliana. Science 317, 338-342. 

  20. Jin, J., Cardozo, T., Lovering, R.C., Elledge, S.J., Pagano, M., and Harper, J.W. (2004). Systematic analysis and nomenclature of mammalian Fbox proteins. Gene Dev 18, 2573-2580. 

  21. Cenciarelli, C., Chiaur, D., Guardavaccaro, D., Parks, W., Vidal, M., and Pagano, M. (1999). Identification of a family of human F-box proteins. Curr Biol 9, 1177-1179, S1171-S1173. 

  22. Winston, J.T., Koepp, D.M., Zhu, C., Elledge, S.J., and Harper, J.W. (1999). A family of mammalian F-box proteins. Curr Biol 9, 1180-1182. 

  23. Jain, M., Nijhawan, A., Arora, R., Agarwal, P., Ray, S., Sharma, P., Kapoor, S., Tyagi, A., and Khurana, J. (2007). F-box proteins in rice. Genomewide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress. Plant Physiol 143, 1467-1483. 

  24. Bella, J., Hindle, K., McEwan, P., and Lovell, S. (2008). The leucine-rich repeat structure. Cell Mol Life Sci 65, 2307-2333. 

  25. Andrade, M.A., Perez-Iratxeta, C., and Ponting, C.P. (2001). Protein repeats: structures, functions, and evolution. J Struct Biol 134, 117-131. 

  26. Neer, E.J., Schmidt, C.J., Nambudripad, R., and Smith, T.F. (1994). The ancient regulatory-protein family of WD-repeat proteins. Nature 371, 297-300. 

  27. Smith, T.F., Gaitatzes, C., Saxena, K., and Neer, E.J. (1999). The WD repeat: a common architecture for diverse functions. Trends Biochem Sci 24, 181-185. 

  28. Clissold, P.M., and Ponting, C.P. (2001). JmjC: cupin metalloenzymelike domains in jumonji, hairless and phospholipase A2 [beta]. Trends Biochem Sci 26, 7-9. 

  29. Tsukada, Y., Fang, J., Erdjument-Bromage, H., Warren, M.E., Borchers, C.H., Tempst, P., and Zhang, Y. (2006). Histone demethylation by a family of JmjC domain-containing proteins. Nature 439, 811-816. 

  30. Lu, F., Li, G., Cui, X., Liu, C., Wang, X. J., and Cao, X. (2008). Comparative Analysis of JmjC Domain-containing Proteins Reveals the Potential Histone Demethylases in Arabidopsis and Rice. J Integr Plant Biol 50, 886-896. 

  31. Ponting, C., Schultz, J., and Bork, P. (1997). SPRY domains in ryanodine receptors (Ca2+-release channels). Trends Biochem Sci 22, 193-194. 

  32. Schumann, N., Navarro-Quezada, A., Ullrich, K., Kuhl, C., and Quint, M. (2011). Molecular Evolution and Selection Patterns of Plant F-Box Proteins with C-Terminal Kelch Repeats. Plant Physiol 155, 835-850. 

  33. Bailey, T.L., and Elkan, C. (1994). Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2, 28-36. 

  34. Bailey, T.L., Williams, N., Misleh, C., and Li, W.W. (2006). MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 34, W369-373. 

  35. Crooks, G.E., Hon, G., Chandonia, J.M., and Brenner, S.E. (2004). WebLogo: a sequence logo generator. Genome Res 14, 1188-1190. 

  36. Imafuku, I., Waragai, M., Takeuchi, S., Kanazawa, I., Kawabata, M., Mouradian, M.M., and Okazawa, H. (1998). Polar amino acid-rich sequences bind to polyglutamine tracts. Biochem Biophys Res Comm 253, 16- 20. 

  37. Tajima, T., Oda, A., Nakagawa, M., Kamada, H., and Mizoguchi, T. (2007). Natural variation of polyglutamine repeats of a circadian clock gene ELF3 in Arabidopsis. Plant Biotechnol 2, 237-240. 

  38. Saleem, Q., Anand, A., Jain, S., and Brahmachari, S.K. (2001). The polyglutamine motif is highly conserved at the Clock locus in various organisms and is not polymorphic in humans. Hum Genet 109, 136-142. 

  39. Lindqvist, C., Laakkonen, L., and Albert, V. (2007). Polyglutamine variation in a flowering time protein correlates with island age in a Hawaiian plant radiation. BMC Evol Biol 7, 105. 

  40. Cavalier-Smith, T. (2003). Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae). Phil Trans R Soc B 358, 109. 

  41. Larkin, M., Blackshields, G., Brown, N., Chenna, R., McGettigan, P., Mc- William, H., Valentin, F., Wallace, I., Wilm, A., Lopez, R. (2007). Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947-2948. 

  42. Morgenstern, B., and Atchley, W.R. (1999). Evolution of bHLH transcription factors: modular evolution by domain shuffling? Mol Biol Evol 16, 1654. 

  43. Quevillon, E., Silventoinen, V., Pillai, S., Harte, N., Mulder, N., Apweiler, R., and Lopez, R. (2005). InterProScan: protein domains identifier. Nucleic Acids Res 33, W116-120. 

  44. Bernhard, G., Yann, G., and Mark, C.J. (2008). HECTAR: A method to predict subcellular targeting in heterokonts. BMC Bioinformatics 9, 393. 

  45. Saitou, N., and Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406-425. 

  46. Tamura, K., Dudley, J., Nei, M., and Kumar, S. (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24, 1596-1599. 

  47. Zhang, J., Rosenberg, H.F., and Nei, M. (1998). Positive Darwinian selection after gene duplication in primate ribonuclease genes. PNAS 95, 3708-3713. 

저자의 다른 논문 :

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로