$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

배수불량 경사지 논 토양의 배수방법에 따른 토양 물리성 변화
Variation of Soil Physical Characteristics by Drainage Improvement in Poorly Drained Sloping Paddy Field 원문보기

韓國土壤肥料學會誌 = Korean journal of soil science & fertilizer, v.45 no.5, 2012년, pp.704 - 710  

정기열 (농촌진흥청 국립식량과학원 기능성작물부 잡곡과) ,  윤을수 (농촌진흥청 국립식량과학원 기능성작물부 잡곡과) ,  박창영 (농촌진흥청 국립식량과학원 기능성작물부 잡곡과) ,  황재복 (농촌진흥청 국립식량과학원 기능성작물부 잡곡과) ,  최영대 (농촌진흥청 국립식량과학원 기능성작물부 잡곡과) ,  전승호 (농촌진흥청 국립식량과학원 기능성작물부 잡곡과) ,  이황아 (농촌진흥청 국립식량과학원 기능성작물부 잡곡과)

초록
AI-Helper 아이콘AI-Helper

경사지 배수불량 논에서 밭작물의 안정적인 재배를 위한 배수개선 방법을 개발하기 위하여 논둑아래 기저부에 1열로 명거 (겉도랑 배수), 비닐차단막, 암거 (속도랑 배수), 관다발 등 네 가지 종류의 배수시설을 설치하여 배수개선 방법에 따른 토양의 물리적 특성변화를 비교 분석한 결과 다음과 같은 결론을 얻었다. 배수방법별 토양의 용적밀도는 배수방법 간에 큰 차이가 없었으나 집적층 (B층)의 투수력은 암거배수구가 $2.67cm\;hr^{-1}$로 가장 높았고 다음은 관다발배수 $1.53cm\;hr^{-1}$이었으며, 명거배수, 비닐차단막은 $0.8cm\;hr^{-1}$내외로 낮은 경향을 보였다. 경작층 (Ap)의 액상은 명거배수, 비닐차단막 처리구가 35% 내외로 높은 경향을 보였으나 암거배수구에서는 수분함량이 크게 감소되었다. 또한 암거배수구의 기상은 32 ~ 35% 내외로 명거배수, 비닐차단막, 관다발 처리구 17 ~ 20% 보다 상대적으로 높아 공극률이 증가하는 것으로 나타났다. 명거배수 처리구의 토색은 수분과다와 높은 지하수위로 환원작용이 일어나 회색을 보인 반면 암거배수구에서는 투수성 및 통기성이 증가하여 회색층의 토색이 명갈색을 변화되었고 환원층의 출현 깊이가 깊어지고 점차 층위분화가 진행됨을 확인할 수 있었다. 강우 후 토양 깊이별 수분함량 변화를 분석한 결과 명거배수 처리구의 표토에서는 7일이 경과하여야 토양수분이 30 mm이하로 감소되었으나 20 cm 이하의 깊이에서는 항상 수분이 과잉된 상태로 지속되는 경향을 보였다. 반면 암거 배수 처리구에서는 강우 후 5 일이 경과 후에 토양 30 cm 깊이까지 수분함량이 30 mm 이하로 감소되어 배수개선 효과가 가장 높았다. 따라서 "배수불량"인 경사지 논에서 논둑 밑 1열의 암거배수 시설 설치가 명거배수, 비닐차단막, 관다발 배수방법에 비해 토양의 물리성 개선효과가 높아 밭작물의 안정적인 생산과 농지자원의 이용전환 즉 논을 밭으로 이용해야 하는 범용농지 기반 조성을 위한 저비용의 실용적인 배수개선 방법으로 이용성이 높은 것으로 판단되었다.

Abstract AI-Helper 아이콘AI-Helper

The lower portion of sloping paddy fields normally contains excessive moisture and the higher water table caused by the inflow of ground water from the upper part of the field resulting in non-uniform water content distribution. Four drainage methods namely Open Ditch, Vinyl Barrier, Pipe Drainage a...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 따라서 본 연구는 경사지 배수불량 논에서 논둑 바로 밑에 1열로 명거 (겉도랑) 배수, 비닐차단막, 암거 (속도랑)배수, 관다발 등 4개의 배수시설을 설치 후 배수개선 방법별 토양의 물리성 개선효과를 비교 분석하기 위하여 3년간 현지 시험하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
경사지 배수불량 논에서 밭작물의 안정적인 재배를 위한 배수개선 방법 개발을 위해 어떤 것을 설치하였는가? 경사지 배수불량 논에서 밭작물의 안정적인 재배를 위한 배수개선 방법을 개발하기 위하여 논둑아래 기저부에 1열로 명거 (겉도랑 배수), 비닐차단막, 암거 (속도랑 배수), 관다발 등 네 가지 종류의 배수시설을 설치하여 배수개선 방법에 따른 토양의 물리적 특성변화를 비교 분석한 결과 다음과 같은 결론을 얻었다. 배수방법별 토양의 용적밀도는 배수방법 간에 큰 차이가 없었으나 집적층 (B층)의 투수력은 암거배수구가 $2.
배수개선 방법에 따른 토양의 물리적 특성변화를 비교 분석한 결과 중, 토색에 대한 결과는 어떠한가? 또한 암거배수구의 기상은 32 ~ 35% 내외로 명거배수, 비닐차단막, 관다발 처리구 17 ~ 20% 보다 상대적으로 높아 공극률이 증가하는 것으로 나타났다. 명거배수 처리구의 토색은 수분과다와 높은 지하수위로 환원작용이 일어나 회색을 보인 반면 암거배수구에서는 투수성 및 통기성이 증가하여 회색층의 토색이 명갈색을 변화되었고 환원층의 출현 깊이가 깊어지고 점차 층위분화가 진행됨을 확인할 수 있었다. 강우 후 토양 깊이별 수분함량 변화를 분석한 결과 명거배수 처리구의 표토에서는 7일이 경과하여야 토양수분이 30 mm이하로 감소되었으나 20 cm 이하의 깊이에서는 항상 수분이 과잉된 상태로 지속되는 경향을 보였다.
강우 후 토양 깊이별 수분함량 변화를 분석한 결과는 어떠한가? 명거배수 처리구의 토색은 수분과다와 높은 지하수위로 환원작용이 일어나 회색을 보인 반면 암거배수구에서는 투수성 및 통기성이 증가하여 회색층의 토색이 명갈색을 변화되었고 환원층의 출현 깊이가 깊어지고 점차 층위분화가 진행됨을 확인할 수 있었다. 강우 후 토양 깊이별 수분함량 변화를 분석한 결과 명거배수 처리구의 표토에서는 7일이 경과하여야 토양수분이 30 mm이하로 감소되었으나 20 cm 이하의 깊이에서는 항상 수분이 과잉된 상태로 지속되는 경향을 보였다. 반면 암거 배수 처리구에서는 강우 후 5 일이 경과 후에 토양 30 cm 깊이까지 수분함량이 30 mm 이하로 감소되어 배수개선 효과가 가장 높았다.
질의응답 정보가 도움이 되었나요?

참고문헌 (30)

  1. Black, C.A. 1965. Methods of soil analysis, Part I. Am. Soc. Agron, Medison, USA. 

  2. Box, J.E.Jr. 1991. The effect of waterloogging on rooting intermittent flooding on germination and seeding growth of cotton. Trans. ASAE. 14:567-570. 

  3. Cannell, R.Q. and M.B. Jackson. 1981. Alleviating aeration stress. p. 141-192. In G.f. Arkin and H.M. Talors (ed) Modifying the root environment to reduce crop stress. ASAE. St.Joseph. MI. 

  4. Darcy, H. 1856. Les Fontaines Publiques de la Ville de Dijon, Dalmont, Paris. 

  5. Doh, D.H., S.J. Kim, S.K. Jin, and R.C. Jo. 1994. A study on variation of the soil physical characteristics of multiutilized paddy field by the introduction of subsurface drainage facility. Journal of Life Science 1:87-96. 

  6. Evans, C.V. and D.P. Franzmeier. 1986. Saturation aeration and color patterns in atoposequence of soil in north-central Indiana. Soil Sci. soc. Am. J. 50:975-980. 

  7. Gardner, W.K., M.F. Drendel, and G.K. McDonald. 1994. Effects of subsurface drainage, cultivation and stubble retention on soil porosity and crop growth in a high rainfall area. Australian Journal of Experimental Agriculture 34:411-418. 

  8. Han, W.D., D.H. Jung, and H.C. Kim. 1970. Study on mole drainage. p. 13-19. In Research report of agro-environment research. Institute of Agricultural Engineerring & Utilization, Suwon, Korea. 

  9. Hiler, E.A. 1976. Drainage requirements of crops Proc. ASEA, Third national Drainage Symposium. ASAE, p:127-129. 

  10. Ji, G.H. 1981. Study on Subsurface drainage system for the multipurpose paddy field. Journal of the Korean Society of Agricultural Engineers 23(4):15-20. 

  11. Joo, J.H. 1976. A study of underground drainage in low and wet paddy field. Jinju A. & F. Jr. coll. 14:199-204. 

  12. Joo, J.H. 1978. A study of underground drainage in low and wet paddy field(VI). Jinju A. & F. Jr. coll. 16:183-188. 

  13. Jun, J.H., C.H. Yang, K.B. Lee, and J.K. Nam. 1994. Effect of mole drainage on soybean growth in paddy field (Jeonbug series, Aeric Halaquepts). Korean J. Soil Sci. Fert. 27(4):296-302. 

  14. Jung, S.J., C.S. Park, G.S. Hyen, S.K. Rim, G.H. Cho, and Y.T. Jung. 1996. Land suitability classification and it's distribution for paddy-upland rotations in Korea. RDA. J. Agri. Sci. 38(1): 357-363. 

  15. Kim, C.U. 1976. Studies on improvement of low and wet paddy field underdrainage(I) -Change of decreasing water depth and ground water level. Research Review Kyungpook National Univ. 22: 331-338. 

  16. Kim, C.U. 1976. Studies on improvement of low and wet paddy field underdrainage(II) -Change of moisture content and bearing capacity of soil. Research Review Kyungpook National Univ. 24:423-436. 

  17. Kim, L.Y., H.Y. Cho, and K.H. Han. 2003. Effects of tile drain on physicochemical properties and crop productivity of soils under newly constructed plastic film house. Korean J. Soil Sci. Fert. 36(3):154-162 

  18. Kim, D.S., J.E. Yang, Y.S. Ok, and K.Y. You. 2006. Effect of perforated PVC underdrainage pipe on desalting of plastic film house soils. Korean J. Soil Sci. Fert. 39(2):65-72. 

  19. Kwun, S.K., D.O. Jung, and W.D. Han. 1980. Influence of subsurface drain spacing desalinization and drainage tidal reclamation lands. RDA. J. Agri. Sci. 22:1-9. 

  20. Lee, S.H., Y. An, S.H. Yoo, and Y.S. Jung. 2001. Desalinization effect of subsurface drainage system with rice hull packing. J. Korean Soc. Agri. Eng. 43(5): 63-69. 

  21. Liefers, V.J. and R.L. Rothwell. 1987. Effects of drainage on substrate temperature and physiology of some trees and shrubs in an Alberta Peatland. Can. J. Forest Res. 17:97-104. 

  22. MIFAFA. 2004. Agricultural drainage criteria. Ministry for Food, Agriculture, Forestry and Fisheries, Gwacheon, Korea. 

  23. NIAST. 2000. Methods of soil chemical analysis. National Institute of Agricultural Science and Technology, RDA, Suwon, Korea. 

  24. Plamenac, N. 1988. Effects of subsurface drainage on heavy hydromorphic soil in the Nelindvor area, Yugoslavia. Agricultural Water Management. 14:19-27. 

  25. Skaggs, R.W., S. Hardjoamidjojo, E.H. Wiser, and E.A. Hiler. 1982. Simulation of crop response and subsurface drainage systems. Trans. ASAE 25(6):1673-1678. 

  26. USDA. 1993. Soil survey manual. 

  27. USDA. 1996. Soil Survey Laboratory Methods Manual. soil survey investions report No. 42 version 3.0. 

  28. Wesseling, J. and W.R. van Wijk. 1957. Soil physical conditions in relation to drain depth. In: Luthin, J.N. (Ed.), Drainage of Agricultural Lands. Madison, WI, p:461-504. 

  29. Wesseling, J. 1974. Crop growth and wet soils. In J. van Schitfgaard(Ed) Drainage for Agriculture. Agron. Monogr. 17.ASA. Madison. WI. p:39-90. 

  30. Zucker, L.A. and Brown(Eds), L.C. 1998. Agricultural drainage: Water quality impacts and subsurface drainage studies in the Midwest, The Ohio State University Extension Bulletin 871. The Ohio State University, Columbus, Ohio. 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로