$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

바이오에너지 생산 및 폐수처리를 위한 미생물연료전지
Microbial Fuel Cells for Bioenergy Generation and Wastewater Treatment 원문보기

공업화학 = Applied chemistry for engineering, v.24 no.6, 2013년, pp.567 - 578  

나재운 (순천대학교 고분자공학과) ,  노성희 (조선대학교 생명화학공학)

초록
AI-Helper 아이콘AI-Helper

미생물연료전지는 혐기성 조건에서 미생물의 촉매 반응을 통해 유기물질의 화학에너지전기에너지로 변환하는 생물전기화학 장치이다. 미생물연료전지의 전력밀도 및 쿨롱효율은 산화전극 챔버 내 미생물의 종류, 시스템 구성요소 및 운전조건에 영향을 받는다. 미생물연료전지에서 달성할 수 있는 전력은 구성요소, 물리적 및 화학적 운전조건, 바이오 촉매 선택 등의 최적화로 디자인을 변형하여 현저하게 증가시킬 수 있다. 본 총설에서는 미생물연료전지의 구성, 운전 매개변수의 최적화 및 성능과 더불어 장래 응용에 대한 최근 연구를 중점적으로 고찰하고자 한다.

Abstract AI-Helper 아이콘AI-Helper

A microbial fuel cell (MFC) is a bio-electrochemical device that converts chemical energy in the chemical bonds in organic compounds to electrical energy through catalytic reactions of microorganisms under anaerobic conditions. Power density and Coulombic efficiency are significantly affected by the...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
연료전지란? 연료전지는 화석연료의 부족과 지구환경 문제를 해결할 수 있는 유망기술 중 하나로서 유해 가스를 거의 방출하지 않고, 화학에너지를 전기에너지로 변환시키는 무공해의 고효율 에너지생산 시스템이다. 특히, 박테리아를 이용하여 폐기물로부터 전기에너지를 생산할 수 있는 미생물연료전지(microbial fuel cells, MFCs)는 신재생에너지의 새로운 연구분야로서 많은 관심을 받고 있다[1-5].
미생물연료전지는 무엇인가? 미생물연료전지는 혐기성 조건에서 미생물의 촉매 반응을 통해 유기물질의 화학에너지를 전기에너지로 변환하는 생물전기화학 장치이다. 미생물연료전지의 전력밀도 및 쿨롱효율은 산화전극 챔버 내 미생물의 종류, 시스템 구성요소 및 운전조건에 영향을 받는다.
MFCs를 실용적인 연료전지에 접근하기 위해서는 어떤 문제를 해결해야 하는가? MFCs는 유기성 폐수를 처리하면서 동시에 전기에너지를 생산할 수 있다는 측면에서 큰 장점을 가지고 있지만, 전기발생 성능은 수소를 이용한 일반 화학 연료전지에 비해 매우 낮다. 따라서 실용적인 연료전지에 근접하기 위해서는 전력밀도를 향상시켜야 하는 중요한 문제가 남아있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (99)

  1. B. E. Logan and K. Rabaey, Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies, Sci., 337, 686 (2012). 

  2. H. Moon, I. S. Chang, and B. H. Kim, Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell, Bioresource Technol., 97, 621 (2006). 

  3. Y. Choi, E. Jung, S. Kim, and S. Jung, Membrane fluidity sensoring microbial fuel cell, Bioelectrochem., 59, 121 (2003). 

  4. D. H. Park and J. G. Zeikus, Electricity generation in microbial fuel cells using neutral red as an electronophore, Appl. Environ. Microbiol., 66, 1292 (2000). 

  5. S. H. Roh, S. W. Lee, K. R. Kim, and S. I. Kim, Electricity generation from dairy wastewater using microbial fuel cell, J. Korean Ind. Eng. Chem., 23, 297 (2012). 

  6. B. E. Logan, B. Hamelers, R. Rozendal, U. Schroder, J. Keller, S. Freguia, P. Alterman, W. Verstraete, and K. Rabaey, Microbial fuel cells: methodology and technology, Environ. Sci. Technol., 40, 5181 (2006). 

  7. J. K. Jang, T. H. Pham, I. S. Chang, K. H. Kang, H. Moon, K. S. Cho, and B. H. Kim, Construction and operation of a novel mediator and membrane-less microbial fuel cell, Process Biochem., 39, 1007 (2004). 

  8. G. C. Gil, I. S. Chang, B. H. Kim, M. Kim, J. K. Jang, H. S. Park, and H. J. Kim, Operational parameters affecting the prformannce of a mediator-less microbial fuel cell, Biosens. Bioelectron., 18, 327 (2003). 

  9. H. Liu and B. E. Logan, Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane, Environ. Sci. Technol., 38, 4040 (2004). 

  10. S. Oh, B. Min, and B. E. Logan, Cathode performance as a factor in electricity generation in microbial fuel cells, Environ. Sci. Technol., 38, 4900 (2004). 

  11. Z. W. Du, H. R. Li, and T. Y. Gu, A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy, Biotechnol. Adv., 25, 464 (2007). 

  12. K. Rabaey and W. Verstraete, Microbial fuel cells: novel biotechnology for energy generation, Trends Biotechnol., 23, 291 (2005). 

  13. B. E. Logan and J. M. Regan, Electricity-producing bacterial communities in microbial fuel cells, Trends Microbiol., 14, 512 (2006). 

  14. I. S. Chang, H. Moon, O. Bretschger, J. K. Jang, H. I. Park, K. H. Nealson, and B. H. Kim, Electrochemically active bacteria (EAB) and mediator-less microbial fuel cells, J. Microbiol. Biotechnol., 16, 163 (2006). 

  15. D. R. Lovley, Microbial fuel cells: novel microbial physiologies and engineering approaches, Curr. Opin. Biotechnol., 17, 327 (2006). 

  16. B. H. Kim, I. S. Chang, and G. M. Gadd, Challenges in microbial fuel cell development and operation, Appl. Microbiol. Biotechnol., 76, 485 (2007). 

  17. D. R. Lovley, Bug juice: harvesting electricity with microorganisms, Nat. Rev. Microbiol., 4, 497 (2006). 

  18. U. Schorder, Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency, Phys. Chem. Chem. Phys., 9, 2619 (2007). 

  19. P. Clauwaert, D. Van der Ha, N. Boon, K. Verbeken, M. Verhaege, K. Rabaey, and W. Verstrate, Open air biocathode enables effective electricity generation with microbial fuel cells, Environ. Sci. Technol., 41, 7564 (2007). 

  20. U. Schorder, J. Niebn, and F. Scholz, A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude, Angew. Chem. Int. Ed., 42, 2880 (2003). 

  21. Y. Qiao, C. M. Li, S. J. Bao, and Q. L. Bao, Carbon nanotube/ polyaniline composite as anode aterial for microbial fuel cells, J. Power Sources, 170, 79 (2007). 

  22. S. I. Kim, J. W. Lee, and S. H. Roh, Performance of polyacrylonitrile- carbon nanotubes composite on carbon cloth as electrode material for microbial fuel cells, J. Nanosci. Nanotechnol., 11, 1364 (2011). 

  23. J. Xu, G. P. Sheng, H. W. Luo, W. W. Li, L. F. Wang, and H. Q. Yu, Fouling of proton exchange membrane (PEM) deteriorates the performance of microbial fuel cell, Water Res., 46, 1817 (2012). 

  24. Z. Li, L. Yao, L. Kong, and H. Liu, Electricity generation using a baffled microbial fuel cell convenient for stacking, Bioresource Technol., 99, 1650 (2008). 

  25. D. H. Park and J. G. Zeikus, Utilization of electrically reduced neutral red by Actinobacillus succinogenes: physiological function of neutral red in membrane-driven fumarate reduction and energy conservation, J. Bacteriol., 181, 2403 (1999). 

  26. S. K. Chaudhuri and D. R. Lovley, Electricity generation by direct oxidation of glucose in mediator less microbial fuel cells, Nat. Biotechnol., 21, 1229 (2003). 

  27. K. Rabaey, G. Lissens, S. D. Siciliano, and W. Verstraete, A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency, Biotechnol. Lett., 25, 1531 (2003). 

  28. B. Min, S. Cheng, and B. E. Logan, Electricity generation using membrane and salt bridge microbial fuel cells, Water Res., 39, 1675 (2005). 

  29. G. M. Delaney, H. P. Bennetto, J. R. Mason, S. D. Roller, J. L. Stirling, and B. F. Thurston, Electron-transfer coupling in microbial fuel cells, J. Chem. Tech. Biotechnol., 34B, 13 (1984). 

  30. K. Rabaey, P. Clauwaert, P. Aelterman, and W. Verstraete, Tubular microbial fuel cells for efficient electricity generation, Environ. Sci. Technol., 39, 8077 (2005). 

  31. J. R. Kim, S. H. Jung, J. M. Regan, and B. E. Logan, Electricity generation and microbial community analysis of alcohol powered microbial fuel cells, Bioresource Technol., 98, 2568 (2007). 

  32. Z. He, N. Wagner, S. D. Minteer, and L. T. Angenent, An upflow microbial fuel cell with an interior cathode: assessment of the internal resistance by impedance spectroscopy, Environ. Sci. Technol., 40, 5212 (2006). 

  33. P. Aelterman, K. Rabaey, H. T. Pham, N. Boon, and W. Verstraete, Continuous electricity generation at high voltages and currents using stacked microbial fuel cells, Environ. Sci. Technol., 40, 3388 (2006). 

  34. Z. He, S. D. Minteer, and L. T. Angenent, Electricity generation from artificial wastewater using an upflow microbial fuel cell, Environ. Sci. Technol., 39, 5262 (2005). 

  35. E. H. Yu, S. Cheng, K. Scott, and B. Logan, Microbial fuel cell performance with non-Pt cathode catalysts, J. Power Sources, 171, 275 (2007). 

  36. S. Freguia, K. Rabaey, Z. Yuan, and J. Keller, Electron and carbon balances in microbial fuel cells reveal temporary bacterial storage behavior during electricity generation, Environ. Sci. Technol., 41, 2915 (2007). 

  37. K. Rabaey, N. Boon, M. Hofte, and W. Verstraete, Microbial phenazine production enhances electron transfer in biofuel cells, Environ. Sci. Technol., 39, 3401 (2005). 

  38. R. A. Bullen, T. Arnot, J. B. Lakeman, and F. C. Walsh, Biofuel cells and their development, Biosens. Bioelectron, 21, 2015 (2006). 

  39. S. Cheng, H. Liu, and B. E. Logan, Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells, Environ. Sci. Techol., 40, 364 (2006). 

  40. S. Freguia, K. Rabaey, Z. Yuan, and J. Keller, Non-catalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells, Electrochem. Acta., 53, 598 (2007). 

  41. M. Rosenbaum, F. Zhao, M. Quaas, H. Wulff, U. Schorder, and F. Scholz, Evaluation of catalytic properties of tungsten carbide for the anode of microbial fuel cells, Appl. Catal. B Environ., 74, 261 (2007). 

  42. B. H. Kim and H. G. Woo, Dehydrocoupling, redistributive coupling, and addition of main group 4 hydrides, Adv. Organomet. Chem., 52, 143 (2005). 

  43. K. T. Jeng, C. C. Chien, N. Y. Hsu, W. M. Huang, S. D. Chiou, and S. H. Lin, Fabrication and impedance tudies of DMFC anode incorporated with CNT-supported high-metal-content electrocatalyst, J. Power Sources, 164, 33 (2007). 

  44. G. An, P. Yu, L. Mao, Z. Sun, Z. Liu, and S. Miao, Synthesis of PtRu/carbon nanotube composites in supercritical fluid and their application as an electrocatalyst for direct methanol fuel cells, Carbon, 45, 536 (2007). 

  45. Y. Zou, C. Xiang, L. Yang, L. Sun, F. Xu, and Z. Cao, A mediatorless microbial fuel cell using polypyrrole coated carbon nanotubes composite as anode material, J. Hydrogen Energy, 33, 4856 (2008). 

  46. D. H. Park and J. G. Zeikus, Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens, Appl. Microbiol. Biotechnol., 59, 58 (2002). 

  47. A. ter Heijne, H. V. M. Hamelers, V. de Wilde, R. A. Rozendal, and C. J. N. Buisman, A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells, Environ. Sci. Technol., 40, 5200 (2006). 

  48. A. Rhoads, H. Beyenal, and Z. Lewandowski, Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant, Environ. Sci. Technol., 39, 4666 (2005). 

  49. F. Zhao, U. Harnisch, U. Schroder, F. Scholz, P. Bogdanoff, and I. Herrmann, Challenges and constraints of using oxygen cathodes in microbial fuel cells, Environ. Sci. Technol., 40, 5193 (2006). 

  50. Z. He and L. T. Angenent, Application of bacterial biocathodes in microbial fuel cells, Electroanalysis, 18, 2009 (2006). 

  51. E. H. Yu, S. Cheng, K. Scott, and B. Logan, Microbial fuel cell performance with non-Pt cathode catalysts, J. Power Sources, 171, 275 (2007). 

  52. F. Zhao, F. Harnisch, U. Schroder, F. Scholz, P. Bogdanoff, and I. Herrmann, Application of pyrolysed iron (II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells, Electrochem. Commun., 7, 1405 (2005). 

  53. P. Clauwaert, K. Rabaey, P. Aelterman, L. de Schamphelaire, T. H. Pham, P. Boeckx, N. Boon, and W. Verstraete, Biological denitrification in microbial fuel cells, Environ. Sci. Technol., 41, 3354 (2007). 

  54. L. Cindrella and A. M. Kannan, Membrane electrode assembly with doped polyaniline interlayer for proton exchange membrane fuel cells under low relative humidity conditions, J. Power Sources, 193, 447 (2009). 

  55. D. H. Park, S. K. Kim, I. H. Shin, and Y. J. Jeong, Electricity production in biofuel cell using modified graphite electrode with neutral red, Biotechnol. Lett., 22, 1301 (2000). 

  56. B. Min and B. E. Logan, Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell, Environ. Sci. Technol., 38, 5809 (2004). 

  57. S. E. Oh and B. E. Logan, Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells, Appl. Microbiol. Biotechnol., 70, 162 (2006). 

  58. S. Cheng, H. Liu, and B. E. Logan, Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing, Environ. Sci. Technol., 40, 2426 (2006). 

  59. H. Liu, S. Cheng, and B. E. Logan, Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration, Environ. Sci. Technol., 39, 5488 (2005). 

  60. D. R. Bond, D. E. Holmes, L. M. Tender, and D. R. Lovley, Electrode-reducing microorganisms that harvest energy from marine sediments, Science, 295, 483 (2002). 

  61. K. Rabaey, W. Ossieur, M. Verhaege, and W. Verstraete, Continuous microbial fuel cells convert carbohydratesto electricity, Water Sci. Technol., 52, 515 (2005). 

  62. S. V. Mohan, R. Saravanan, S. V. Raghavulu, G. Mohanakrishna, and P. N. Sarma, Bioelectricity production from wastewater treatment in dual chambered microbial fuel cell (MFC) using selectively enriched mixed microflora: effect of catholyte, Bioresource Technol., 99, 596 (2008). 

  63. H. Liu, R. Ramnarayanan, and B. E. Logan, Production of electricity during wastewater treatment using a single chamber microbial fuel cell, Environ. Sci. Technol., 38, 2281 (2004). 

  64. H. Liu, S. Cheng, and B. E. Logan, Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell, Environ. Sci. Technol., 39, 658 (2005). 

  65. S. Cheng, H. Liu, and B. E. Logan, Increased performance of single- chamber microbial fuel cells using an improved cathode structure, Electrochem. Commun., 8, 489 (2006). 

  66. S. Cheng and B. E. Logan, Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells, Electrochem. Commun., 9, 492 (2007). 

  67. B. Logan and S. Cheng, Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells, Environ. Sci. Technol., 41, 3341 (2007). 

  68. J. Niessen, U. Schroder, M. Rosenbaum, and F. Scholz, Fluorinated polyanilines as superior materials for electrocatalytic anodes in bacterial fuel cells, Electrochem. Commun., 6, 571 (2004). 

  69. Y. Qiao, S. J. Bao, C. M. Li, X. Q. Cui, Z. S. Lu, and J. Guo, Nanostructured polyaniline/titanium dioxide composite anode for microbial fuel cells, ACS Nano., 2, 113 (2008). 

  70. T. Sharma, L. M. Reddy, T. S. Chandra, and S. Ramaprabhu, Development of carbon nanotubes and nanofluids based microbial fuel cell, J. Hydrogen Energy, 33, 6749 (2008). 

  71. S. R. Crittenden, C. J. Sund, and J. J. Sumner, Mediating electron transfer from bacteria to a gold electrode via a self-assembled monolayer, Langmuir, 22, 9473 (2006). 

  72. M. Adachi, T. Shimomura, M. Komatsu, H. Yakuwa, and A. Miya, A novel mediator-polymer-modified anode for microbial fuel cells, Chem. Commun., 17, 2055 (2008). 

  73. R. A. Rozendal, H. V. M. Hamelers, and C. J. N. Buisman, Effects of membrane cation transport on pH and microbial fuel cell performance, Environ. Sci. Technol., 40, 5206 (2006). 

  74. C. I. Torres, A. K. Marcus, and B. E. Rittmann, Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria, Biotechnol. Bioeng., 100, 872 (2008). 

  75. C. A. Pham, S. J. Jung, N. T. Phung, J. Lee, I. S. Chang, and B. H. Kim, A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell, FEMS Microbiol. Lett., 223, 129 (2003). 

  76. I. A. Ieropoulos, J. Greenman, C. Melhuish, and J. Hart, Comparative study of three types of microbial fuel cell, Enzyme Microb. Technol., 37, 238 (2005). 

  77. C. A. Vega and I. Fernandez, Mediating effect of ferric chelate compounds in microbial fuel cells with Lactobacillus plantarum, Streptococcus lactis, and Erwinia dissolvens, Bioelectrochem. Bioenerg., 17, 217 (1987). 

  78. D. R. Bond and D. R. Lovley, Electricity production by Geobacter sulfurreducens attached to electrodes, Appl. Environ. Microbiol., 69, 1548 (2003). 

  79. S. A. Lee, Y. Choi, S. Jung, and S. Kim, Effect of initial carbon sources on the electrochemical detection of glucose by Gluconobacter oxydans, Bioelectrochemistry, 57, 173 (2002). 

  80. K. Rabaey, N. Boon, S. D. Siciliano, M. Verhaege, and W. Verstraete, Biofuel cells select for microbial consortia that self-mediate electron transfer, Appl. Environ. Microbiol., 70, 5373 (2004). 

  81. B. R. Ringeisen, E. Henderson, P. K. Wu, J. Pietron, R. Ray, and B. Little, High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10, Environ. Sci. Technol., 40, 2629 (2006). 

  82. G. Reguera, K. D. McCarthy, T. Mehta, J. S. Nicoll, M. T. Tuominen, and D. R. Lovley, Extracellular electron transfer via microbial nanowires, Nature, 435, 1098 (2005). 

  83. T. H. Pham, J. K. Jang, I. D. Chang, and B. H. Kim, Improvement of cathode reaction of a mediator less microbial fuel cell, J. Microbiol. Biotechnol., 14, 324 (2004). 

  84. K. Watanabe, Recent developments in microbial fuel cell technologies for sustainable bioenergy, Biosci. Bioeng., 106, 528 (2008). 

  85. K. P. Nevin and D. R. Lovley, Mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geothrix fermentans, Appl. Environ. Microbiol., 68, 2294 (2002). 

  86. B. H. Kim, H. S. Park, H. J. Kim, G. T. Kim, I. S. Chang, and J. Lee, Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell, Appl. Microbiol. Biotechnol., 63, 672 (2004). 

  87. M. E. Hernandez and D. K. Newman, Extracellular electron transfer, Cell. Mol. Life Sci., 58, 1562 (2001). 

  88. J. B. McKinlay and J. G. Zeikus, Extracellular iron reduction is mediated in part by neutral red and hydrogenase in Escherichia coli, Appl. Environ. Microbiol., 70, 3467 (2004). 

  89. M. J. Cooney, E. Roschi, I. W. Marison, C. Comninellis, and U. Stockar, Physiologic studies with the sulfate-reducing bacterium Desulfovibrio desulfuricans: evaluation for use in a biofuel cell, Enzyme Microb. Technol., 18, 358 (1996). 

  90. H. S. Park, B. H. Kim, H. S. Kim, H. J. Kim, G. T. Kim, M. Kim, and I. S. Chang, A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically telated to Clostridium butyricum isolated from a microbial fuel cell, Anaerobe, 7, 297 (2001). 

  91. Y. Han, C. Yu, and H. Liu, A microbial fuel cell as power supply for implantable medical devices, Biosens. Bioelectron, 25, 2156 (2010). 

  92. R. A. Rozendal, H. V. M. Hamelers, R. J. Molenkmp, and J. N. Buisman, Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes, Water Res., 41, 1984 (2007). 

  93. H. Liu, S. Grot, and B. E. Logan, Electrochemically assisted microbial production of hydrogen from acetate, Environ. Sci. Technol., 39, 4317 (2005). 

  94. K. Nath and D. Das, Hydrogen from biomass, Current Sci., 85, 265 (2003). 

  95. B. Tartakovsky, M. F. Manuel, V. Neburchilov, H. Wang, and S. R. Guiot, Biocatalyzed hydrogen production in a continuous flow microbial fuel cell with a gas phase cathode, J. Power Sources, 182, 291 (2008). 

  96. C. E. Reimers, L. M. Tender, S. Fertig, and W. Wang, Harvesting energy from the marine sediment water interface, Environ. Sci. Technol., 35, 192 (2001). 

  97. L. M. Tender, C. E. Reimers, H. A. Stecher, D. E. Holmes, D. R. Bond, D. A. Low, K. Piblobello, S. Fertig, and D. R. Lovley, Harnessing microbially generated power on the seafloor, Nat. Biotechnol., 20, 821 (2002). 

  98. I. S. Chang, H. Moon, J. K. Jang, and B. H. Kim, Improvement of a microbial fuel cell performance as a BOD sensor using respiratory inhibitors, Biosens. Bioelectron., 20, 1856 (2005). 

  99. B. H. Kim, I. S. Chang, G. C. Gil, H. S. Park, and H. J. Kim, Novel BOD (biological oxygen demand) sensor using mediator- less microbial fuel cell, Biotechnol. Lett., 25, 541 (2003). 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로