$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

초록

최근 들어 차세대 추진제로서 각광을 받고 있는 메탄의 성능특성을 분석하고, 메탄/산소 로켓엔진의 기술개발 동향을 조사하였다. 로켓연료로서의 액체메탄은 무독성, 경제성, 우수한 재생냉각성능, 그리고 행성의 현지자원활용(ISRU) 가능성 등과 같은 여러 유리한 특성을 가지며, 액체산소와의 조합시 높은 비추력 확보 및 시스템 경량화가 가능하다. 이러한 이유로, 메탄/산소 엔진에 대한 연구가 활발하게 진행되고 있기는 하지만 그 기술성숙도가 아직은 그리 높지 않은 것으로 확인되는 바, 메탄 로켓엔진 개발을 통하여 우주기술 선진국과의 기술격차 해소가 필요한 시점이라고 판단된다.

Abstract

A study was conducted for the performance characteristics of methane taking recently the limelight in the world as a next-generation propellant, with the survey for state of the art in the development of methane/oxygen rocket engine being accompanied. Liquid methane as a rocket fuel has the favorable characteristics such as non-toxic, low cost, regenerative cooling capability, and potential for in-situ resource utilization (ISRU). The combination of liquid methane and liquid oxygen also provides the excellent performance including high specific impulse and low system mass. For these reasons, many researches have been actively carried out on the methane/oxygen engine, nevertheless, its technology readiness level is not that high enough just yet. Therefore, it is judged that it is the time to mitigate the technical gap with the space technology of advanced countries through a swift onset of the development of methane rocket engine.

질의응답 

키워드에 따른 질의응답 제공
핵심어 질문 논문에서 추출한 답변
XR-3M9
XR-3M9란 무엇인가?
메탄/산소 자세제어용 엔진

메탄/산소 자세제어용 엔진인 XR-3M9는 사설 투자자본에 의해 설계/제작/시험이 시작되었고, 미국 중소기업기술혁신촉진 프로그램을 통해 미공군의 지원을 받으며(AFRL SBIR Phase I Contract) 그 연구/개발이 본격화 되었다. Fig.

자세 제어용 엔진
자세 제어용 엔진의 대표적인 추진제는 무엇인가?
MMH(혹은 UDMH)/NTO 및 하이드라진(N2H4) 등

현재 운용되고 있는 우주발사체의 주 엔진(main engine)은 Kerosene/LOx 혹은 LH2/LOx 추진제 조합이 주를 이루고 있으며, MMH(혹은 UDMH)/NTO 및 하이드라진(N2H4) 등은 자세 제어용 엔진의 대표적인 추진제로 사용 중이다[2,3]. 20세기 말에 이르러서는 추진기관의 개발․운용에 있어 환경문제 및 추진제 취급안전성, 그리고 경제성 등이 대두되면서 우주기술 선진국을 중심으로 친환경 추진제에 대한 연구수요가 증가하고 있는 추세이다[4].

메탄 추진제
케로신과 비교해 메탄 추진제가 갖는 이점은 무엇인가?
케로신은 순도가 로켓 추진제 등급 보다 낮기는 하지만 각종 산업 및 가정용 연료 등으로 널리 활용되는 까닭에 정제/운송에 소요되는 비용이 저렴한데, 메탄은 그 케로신 보다 3배 이상 경제적이므로[11] 근래의 세계적 관심사인 저비용 추진제로서 적절한 것으로 판단된다. 뿐만 아니라, 향후 30-40년 이내에 고갈될 것으로 예측되는 케로신과 달리 그 매장량이 풍부하고(최소 100년 이상)[12] 타 산업에서의 활용도 또한 증가하는 추세이므로 유관기술 발전에 의한 추가적인 경제 효과도 기대된다

메탄을 연료로 적용하는 경우의 연소실 온도(Tchamber)가 더 낮음에도 불구하고 특성속도(characteristic velocity, C*) 및 비추력(specific impulse, Isp) 성능이 케로신을 앞서는 것으로 평가된다. 케로신은 순도가 로켓 추진제 등급 보다 낮기는 하지만 각종 산업 및 가정용 연료 등으로 널리 활용되는 까닭에 정제/운송에 소요되는 비용이 저렴한데, 메탄은 그 케로신 보다 3배 이상 경제적이므로[11] 근래의 세계적 관심사인 저비용 추진제로서 적절한 것으로 판단된다. 뿐만 아니라, 향후 30-40년 이내에 고갈될 것으로 예측되는 케로신과 달리 그 매장량이 풍부하고(최소 100년 이상)[12] 타 산업에서의 활용도 또한 증가하는 추세이므로 유관기술 발전에 의한 추가적인 경제 효과도 기대된다.

질의응답 정보가 도움이 되었나요?

참고문헌 (35)

  1. 1. Sutton, G.P., History of Liquid Propellant Rocket Engines, AIAA, Reston, VA, USA, 2006. 
  2. 2. Sutton, G.P. and Blblarz, O., Rocket Propulsion Elements, 7th Ed., John Wiley & Sons Inc., New York, NY, USA, 2001. 
  3. 3. Kim, J.S., Jung, H., Kam, H.D., Seo, H.S., and Su, H., "A Development of the Thrusters for Space-Vehicle Maneuver/ACS and Their Application to Launch Vehicles," Journal of the Korean Society of Propulsion Engineers, Vol. 14, No. 6, pp. 103-120, 2010. 
  4. 4. Sackheim, R.L. and Masse, R.K., "Green Propulsion Advancement-Challenging the Maturity of Monopropellant Hydrazine," 49th Joint Propulsion Conference, San Jose, CA, USA, AIAA 2013-3988, July 2013. 
  5. 5. Neill, T., Judd, D., Veith, E., and Rousar, D., "Practical Uses of Liquid Methane in Rocket Engine Applications," Acta Astronautica, Vol. 65, Issues 5-6, pp. 696-705, 2009. 
  6. 6. Melcher IV, J.C. and Allred, J.K., "Liquid Oxygen/Liquid Methane Test Results of the RS-18 Lunar Ascent Engine at Simulated Altitude Conditions at NASA White Sands Test Facility," 45th Joint Propulsion Conference, Denver, CO, USA, AIAA 2009-4949, 2009. 
  7. 7. Marshall W.M. and Kleinhenz, J.E., "Hot-Fire Testing of 100 $lb_f$ LOx/ $LCH_4$ Reaction Control Engine at Altitude Conditions," JANNAF 57th JPM/7th MSS/5th LPS/4th SPS Joint Subcommittee Meeting, Colorado Springs, CO, USA, 2010. 
  8. 8. Stanly, D., "NASA's Exploration Systems Architecture Study," NASA-TM-2005-214062, 2005. 
  9. 9. Burkhardt, H., Sippel, M., Herbertz, A., and Klevanski, J., "Effects of the Choice Between Kerosene and Methane on Size and Performance of Reusable Liquid Booster Stages," 39th Joint Propulsion Conference, Huntsville, AL, USA, AIAA 2003-5122, July 2003. 
  10. 10. Applewhite J., Propulsion Technology Development Overview, NASA, April 2011. 
  11. 11. Burkhardt, H., Sippel, M., Klevanski, J., and Herbertz, A., "Comparative Study of Kerosene and Methane Propellants for Reusable Liquid Booster Stages," 38th Joint Propulsion Conference, Indianapolis, IN, USA, AIAA 2002-5235, 2002. 
  12. 12. Klepikov, I.A., Katorgin, B.I., and Chvanov, V.K., "The New Generation of Rocket Engines, Operating by Ecologically Safe Propellant-Liquid Oxygen and Liquefied Natural Gas (Methane)," Acta Astronautica, Vol. 41, No. 4, pp. 209-217, 1997. 
  13. 13. Haeseler, D., Mading, C., Gotz, A., Roubinski, V., Khrissanfov, S., and Berejnoy, V., "Recent Developments for Future Launch Vehicle LOx/HC Rocket Engines," 6th International Symposium on Propulsion for Space Transportation of the 21st Century, Versailles, France, AAAF-02-100, 2002. 
  14. 14. Webster, C.R, Mahaffy, P.R., Atreya, S.K., Flesch, G.J., and Farley, K.A., "Low Upper Limit to Methane Abundance on Mars," Science, Vol. 342, No. 6156, pp. 355-357, Oct. 2013. 
  15. 15. Junaedi, C., Hawley, K., Walsh, D., Roychoudhury, S., Abney, M.B., and Perry, J.L., "Compact and Liqhtweight Sabatier Reactor for Carbon Dioxide Reduction," 41st International Conference on Environmental Systems, Portland, Oregon, USA, AIAA 2011-5033, July 2011. 
  16. 16. Excoffon, T. and Borromee, J., "Future European Reusable Propulsion Systems," Proceedings of the International Symposium on Space Technology and Science, Vol. 23, No. 2, pp. 2558-2563, 2002. 
  17. 17. Olansen, J.B., Munday, S.R., Mitchell, J.D., and Baine, M., "Morpheus: Advancing Technologies for Human Exploration," Global Space Exploration Conference 2012, Washington, USA, May 2012. 
  18. 18. Hurlbert, E.A., McManamen, J.P., Sooknanen, J., and Studak, J.W., "Advanced Development of a Compact 5-15 $lb_f$ LOx/Methane Thruster for an Integrated Reaction Control and Main Engine Propulsion System," 47th Joint Propulsion Conference, San Diego, CA, USA, AIAA 2011-6113, 2011. 
  19. 19. Klem, M.D., Smith, T.D., Wadel, M.F., Meyer, M.L., Free, J.M., and Cikanek III, H.A., "Liquid Oxygen/Liquid Methane Propulsion and Cryogenic Advanced Development," 62nd International Aeronautical Congress, Cape Town, South Africa, IAC-11-C4.1.5, Oct. 2011. 
  20. 20. "LOx-Methane Rocket Engine," retrieved September 29 2013 from http://www.xcor.com/ engines. 
  21. 21. "NASA Stennis Space Center to Test SpaceX Next Generation Rocket Engine Systems," retrieved September 8 2013 from http://www.collectspace.com/ubb/Forum35/HTML/000607.html. 
  22. 22. "Grasshopper Completes Half-mile Flight in Last Test," retrieved September 29 2013 from http://www.spacex.com/news/2013/10/16/ grasshopper-completes-half-mile-flight-last-test. 
  23. 23. "NASA Methane Engine Test," retrieved October 3 2013 from http://armadilloaerospace.com/n.x/Armadillo/Home/News?news_id366. 
  24. 24. "Oxygen/Methane Reaction Control System Thruster Work," retrieved October 3 2013 from http://www.dynetics.com/services/space/space-propulsion/oxygenmethane-reaction-control-system-rcs-thruster-work. 
  25. 25. "Orbitec Methane Engine," retrieved September 29 2013 from http://www.astronautix.com/engines/orbngine.htm#more. 
  26. 26. "Russian/Ukrainian space-rocket and missile liquid-propellant engines," retrieved September 29 2013 from http://www.b14643.de/Spacerockets_1/Diverse/Russian_Rocket_engines/engines.htm. 
  27. 27. Berenbach, J., "Future Launchers Preparation," 7th Journees CNES Jeunes Chercheurs, 2007. 
  28. 28. "GX Rocket," retrieved August 9 2013 from http://ko.wikipedia.org/wiki/GX_%EB%A1%9C%EC%BC%93. 
  29. 29. "LNG Propulsion System," retrieved September 29 2013 from http://www.ihi.co.jp/ia/en/research.html#r02. 
  30. 30. "Morpheus Project," retrieved September 29 2013 from http://morpheuslander.jsc.nasa.gov/about. 
  31. 31. "NASA Moon Lander Prototype Explode in Test Flight," retrieved October 2 2013 from http://www.space.com/17025-nasa-morpheus-moon-lander-crash.html. 
  32. 32. Klem, M.D. and Smith, T.D., "Propulsion and Cryogenics Advanced Development (PCAD) Project Propulsion Technologies for the Lunar Lander," 6th Space Technology and Applications International Forum: Space Colonization, Albuquerque, NM, USA, E-16729, 2008. 
  33. 33. Hurlbert, E.A., Romig, K., Collins, J., Allred, J., and Mahoney, J., "Test Report for 870- $lb_f$ Reaction Control System Tests Using Liquid Oxygen/Ethanol and Liquid Oxygen/Methane at White Sands Test Facility," NASA-TM-2010-216135, 2010. 
  34. 34. "RZ.2 Engine," retrieved October 4 2013 from http://www.astronautix.com/engines/rz2.htm. 
  35. 35. Comstock, D.A., "Technology Development and Infusion from NASA's Innovative Partnerships Program," Aerospace Conference, 2008 IEEE, Big Sky, MT, USA, 9980091, 2008. 

문의하기 

궁금한 사항이나 기타 의견이 있으시면 남겨주세요.

Q&A 등록

DOI 인용 스타일

"" 핵심어 질의응답