$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Carbon Nanotube Synthesis and Growth Using Zeolite by Catalytic CVD and Applications 원문보기

한국세라믹학회지 = Journal of the Korean Ceramic Society, v.50 no.1, 2013년, pp.1 - 17  

Zhao, Wei (Institute for Processing and Application of Inorganic Materials (PAIM), Department of Materials Science and Engineering, Hanseo University) ,  Nam, Seo Dong (Institute for Processing and Application of Inorganic Materials (PAIM), Department of Materials Science and Engineering, Hanseo University) ,  Pokhrel, Ashish (Institute for Processing and Application of Inorganic Materials (PAIM), Department of Materials Science and Engineering, Hanseo University) ,  Gong, Jianghong (Department of Materials Science and Engineering, Tsinghua University) ,  Kim, Ik Jin (Institute for Processing and Application of Inorganic Materials (PAIM), Department of Materials Science and Engineering, Hanseo University)

Abstract AI-Helper 아이콘AI-Helper

Since their first discovery, carbon nanotubes (CNTs) have become a material central to the field of nanotechnology. Owing to their splendid physical, structural and chemical properties, they have the potential to impact a wide range of applications, including advanced ceramics, nanoelectronic device...

주제어

참고문헌 (109)

  1. N. N. Greenwood and E. Earnshaw, "Chemistry of the Elements," 299-307, Butterworth-Heinermann, 1984. 

  2. S. J. Tans, A. R. M. Verschueren, and C. Dekker, "Roomtemperature Transistor based on a Single Carbon Nanotube," Nature, 393 49-52 (1998). 

  3. M. Reibold, P. Paufler, A. A. Levin, W. Kochmann, N. Patzke, and D. C. Meyer, "Materials: Carbon Nanotubes in an Ancient Damascus Sabre," Nature, 444 286-6 (2006). 

  4. T. V. Hughes and C. R. Chambers, "Manufacture of Carbon Filaments," USA Patent No. 405 480 (1889). 

  5. A. Oberlin, M. Endo, and T. Koyama, "Filamentous Growth of Carbon through Benzene Decomposition," J. Cryst. Growth, 32 335-49 (1976). 

  6. S. Iijima, "Helical Microtubules of Graphitic Carbon," Nature, 354 56-8 (1991). 

  7. D. S. Bethune, C. H. Kiang, M. S. Devries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers, "Cobalt-catalysed Growth of Carbon Nanotubes with Single-atomic-layer Walls," Nature, 363 605-7 (1993). 

  8. S. Iijima and T. Ichihashi, "Single-shell Carbon Nanotubes of 1-nm Diameter," Nature, 363 603-5 (1993). 

  9. A. P. Graham, G. S. Duesberg, W. Hoenlein, F. Kreupl, M. Liebau, R. Martin, B. Rajasekharan, W. Pamler, R. Seidel, W. Steinhoegl, and E. Unger, "How do Carbon Nanotubes Fit into the Semiconductor Roadmap?," Appl. Phys. A: Mater. Sci. Process., 80 1141-51 (2005). 

  10. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, "Physical Properties of Carbon Nanotubes," 47-99, Imperial College Press, London, 1998. 

  11. G. D. Nessim, "Properties, Synthesis, and Growth Mechanisms of Carbon Nanotubes with Special Focus on Thermal Chemical Vapor Deposition," Nanoscale, 2 1306-23 (2010). 

  12. Z. Xu, X. D. Bai, Z. L. Wang, and E. G. Wang, "Multiwall Carbon Nanotubes Made of Monochirality Graphite Shells," J. Am. Chem. Soc., 128 1052-3 (2006). 

  13. H. W. Zhu, C. L. Xu, D. H. Wu, B. Q. Wei, R. Vajtai, and P. M. Ajayan, "Direct Synthesis of Long Single-walled Carbon Nanotube Strands," Science, 296 884-6 (2002). 

  14. "The longest carbon nanotubes you've ever seen," http:// www.nsf.gov/news/news_summ.jsp?cntn_id108992. 

  15. M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, "Science of Fullerenes and Carbon Nanotubes," 15-54, Academic Press, SanDiego, 1996. 

  16. H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba, "Optical Properties of Singlewall Carbon Nanotubes," Synth. Met., 103 2555-8 (1999). 

  17. C. H. Yu, L. Shi, Z. Yao, D. Li, and A. Majumdar, "Thermal Conductance and Thermopower of an Individual Single- wall Carbon Nanotube," Nano. Lett., 5 1842-6 (2005). 

  18. C. Dekker, "Carbon Nanotubes as Molecular Quantum Wires," Phys. Today, 52 22-8 (1999). 

  19. P. L. McEuen, "Single-wall Carbon Nanotubes," Phys. World, 13 31-6 (2000). 

  20. P. G. Collins, A. Zettle, H. Bando, A. Thess, and R. E. Smalley, "Nanotube Nanodevice," Science, 278 100-2 (1997). 

  21. R. H. Baughman, C. X. Cui, A. A. Zakhidov, Z. Iqbal, J. N. Barisci, G. M. Spinks, G. G. Wallace, A. Mazzoldi, D. D. Rossi, A. G. Rinzler, O. Jaschinski, S. Roth, and M. Kertesz, "Carbon Nanotube Actuators," Science, 284 1340-4 (1999). 

  22. H. Dai, "Controlling Nanotube Growth," Phys. World, 13 43-7 (2000). 

  23. C. Liu, Y. Tong, H. M. Cheng, D. Golberg, and Y. Bando, "Field Emission Properties of Macroscopic Single-walled Carbon Nanotube Strands," Appl. Phys. Lett., 86, 223114 (1-2) (2005). 

  24. J. Kong, E. Yenilmez, T. W. Tombler, W. Kim, H. J. Dai, R. B. Laughlin, L. Liu, C. S. Jayanthi, and S. Y. Wu, "Quantum Interference and Ballistic Transmission in Nanotube Electron Waveguides," Phys. Rev. Lett., 87 106801 (1-4) (2001). 

  25. C. W. Zhou, J. Kong, and H. J. Dai, "Electrical Measurements of Individual Semiconducting Single-walled Carbon Nanotubes of Various Diameters," Appl. Phys. Lett., 76 1597-9 (2000). 

  26. D. Yokoyama, T. Iwasaki, K. Ishimaru, S. Sato, T. Hyakushima, M. Nihei, Y. Awano, and H. Kawarada, "Electrical Properties of Carbon Nanotubes Grown at a Low Temperature for Use as Interconnects," Jpn. J. Appl. Phys., 47 1985-90 (2008) 

  27. A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H. J. Dai, "Ballistic Carbon Nanotube Field-effect Transistors," Nature, 424 654-7 (2003). 

  28. P. Avouris, "Molecular Electronics with Carbon Naontubes," Acc. Chem. Res., 35 1026-34 (2002). 

  29. A. D. Carlo, A. Pecchia, E. Petrolati, and C. Paoloni, in Nanomodeling II, pp. 632808-11, SPIE, San Diego, CA, USA 2006. 

  30. A. Naeemi and J. D. Meindl, "Design and Performance Modeling for Single-walled Carbon Nanotubes as Local, Semiglobal, and Global Interconnects in Gigascale Integrated Systems," IEEE Trans. Electron. Dev., 54 26-37 (2007). 

  31. P. C. Collins, M. S. Arnold, and P. Avouris, "Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown," Science, 292 706-9 (2001). 

  32. S. Frank, P. Poncharal, Z. L. Wang, and W. A. de Heer, "Carbon Nanotube Quantum Resistors," Science, 280 1744-6 (1998). 

  33. A. Naeemi and J. D. Meindl, "Compact Physical Models for Multiwall Carbon Nanotube Interconnects," IEEE Electron Device Lett., 27 338-40 (2006). 

  34. H. J. Li, W. G. Lu, J. J. Li, X. D. Bai, and C. Z. Gu, "Multichannel Ballistic Transport in Multiwall Carbon Nanotubes," Phys. Rev. Lett., 95 086601 (1-4) (2005). 

  35. J. P. Lu, "Elastic Properties of Carbon Nanotubes and Nanoropes," Phys. Rev. Lett., 79 1297-300 (1997). 

  36. J. P. Salvetat, J. M. Bonard, N. H. Thomson, A. J. Kuik, L. Forro, W. Benoit, and L. Zuppiroli, "Mechanical Properties of Carbon Nanotubes," Appl. Phys. A: Mater. Sci. Process., 69 255-60 (1999). 

  37. E. T. Thostenson, Z. Ren, and T. W. Chou, "Advances in the Science and Technology of Carbon Nanotubes and Their Composites: A Review," Comp. Sci. Tech., 61 1899- 912 (2001). 

  38. M. F. Yu, B. S. Files, S. Arepalli, and R. S. Ruoff, "Tensile Loading of Ropes of Single Wall Carbon Nanotubes and their Mechanical Properties," Phys. Rev. Lett., 84 5552-5 (2000). 

  39. A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos, and M. M. J. Treacy, "Young's Modulus of Single-walled Nanotubes," Phys. Rev. B: Condens. Matter, 58,14013-9 (1998). 

  40. G. Zhou, W. Duan, and B. Gu, "First-principles Study on Morphology and Mechanical Properties of Single-walled Carbon Nanotubes," Chem. Phys. Lett., 333 344-9 (2001). 

  41. Z. Yao, C. C. Zhu, M. Cheng, and J. Liu, "Mechanical Properties of Carbon Nanotube by Molecular Dynamics Simulation," Comput. Mater. Sci., 22 180-4 (2001). 

  42. B. G. Demczyk, Y. M. Wang, J. Cumings, M. Hetman, W. Han, A Zettl, and R. O. Ritchie, "Direct Mechanical Measurement of the Tensile Strength and Elastic Modulus of Multiwalled Carbon Nanotubes," Mater. Sci. Eng. A, 334 173-8 (2002). 

  43. M. Endo, T. Hayashi, Y. A. Kim, M. Terrones, and M. S. Dresselhaus, "Applicaions of Carbon Nanotubes in the Twenty-first Century," Phil. Trans. R. Soc. Lond. A, 362 2223-38 (2004). 

  44. J. Hone, M. Whitney, and A. Zettl, "Thermal Conductivity of Single-walled Carbon Nanotubes," Synth. Met., 103 2498-9 (1999). 

  45. E. Pop, D. Mann, Q. Wang, K. Goodson, and H. J. Dai, "Thermal Conductance of an Individual Single-wall Carbon Nanotube above Room Temperature," Nano. Lett., 6 96-100 (2006). 

  46. P. Kim, L. Shi, A. Majumdar, and P. L. McEuen, "Thermal Transport Measurements of Individual Multiwalled Nanotubes," Phys. Rev. Lett., 87 215502 (1-4) (2001). 

  47. W. A. de Heer, A. Chatelain, and D. Ugarte, "A Carbon Nanotube Field Emission Electron Source," Science, 270 1179-80 (1995). 

  48. R. H. Fowler and L. Nordheim, "Electron Emission in Intense Electric Fields," Proc. R. Soc. London, Ser. A, 119, 173-81 (1928). 

  49. S. S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. J. Dai, "Self-oriented Regular Arrays of Carbon Nanotubes and their Field Emission Properties," Science, 283 512-4 (1999). 

  50. Y. Cheng. and O. Zhou, "Electron Field Emission from Carbon Nanotubes," C. R. Physique, 4 1021-33 (2003). 

  51. N. S. Lee, D. S. Chung, I. T. Han, J. H. Kang, Y. S. Choi, H. Y. Kim, S. H. Park, Y. W. Jin, W. K. Yi, M. J. Yun, J. E. Jung, C. J. Lee, J. H. You, S. H. Jo, C. G. Lee, and J. M. Kim, "Application of Carbon Nanotubes to Field Emission Displays," Diamond and Related Materials, 10 265-70 (2001). 

  52. H. W. Zhu, J. Q. Wei, K. L. Wang, and D. H. Wu, "Applications of Carbon Materials in Photovoltaic Solar Cells," Solar Energy Materials and Solar Cells, 93 1461-70 (2009). 

  53. "Carbon nanotubes in photovoltaics," Wikepedia,(the free encyclopedia) http://en.wikipedia.org/wiki/Carbon_nanotubes_ in_ photovoltaics. 

  54. E. Kymakis, I. Alexandrou, and G. A. J. Amaratunga, "High Open-circuit Voltage Photovoltaic Devices from Carbon-nanotube-polymer Composites," Progress in Photovoltaics: Res. Appl., 93, 1764-8 (2003). 

  55. S. Barazzouk, S. Hotchandani, K. Vinodgopal, and P. V. Kamat, "Single-wall Carbon Nanotube Films for Photocurrent Generation. A Prompt Response to Visible-light Irradiation," J. Phys. Chem. B, 108 17015-8 (2004). 

  56. P. Castrucci, F. Tombolini, M. Scarselli, E. Speiser, S. D. Gobbo, W. Richter, M. D. Crescenzi, M. Diociaiuti, E. Gatto, and M. Venanzi, "Large Photocurrent Generation in Multiwall Carbon Nanotubes," Appl. Phys. Lett., 89 253107 (2006). 

  57. W. Kratschmer, L. D. Lamb, K. Fostiropoulos, and D. R. Huffman, "Solid C60: A New Form of Carbon," Nature, 347 354-8 (1990). 

  58. B. I. Yakobson, and R. E. Smalley, "Fullerene Nanotubes: $C_{1,000,000}$ and Beyond," Am. Sci., 85 324-37 (1997). 

  59. T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, "Catalytic Growth of Single-walled Nanotubes by Laser Vaporization," Chem. Phys. Lett., 243 49-54 (1995). 

  60. P. Eklund, A. Pulickel, R. Blackmon, A. J. Hart, J. Kong, P. Bhabendra, A. Rao, and R. Rinzler, International Assessment of Research and Development n carbon Nanotubes: Manufacturing and Applications, World Technology Evaluation Center, Baltimore, Maryland 21210, USA, 2007, http://www.wtec.org/cnm/. 

  61. W. Zhao, D. N. Seo, H. T. Kim, I. J. Kim, "Characterization of Multi-walled Carbon Nanotubes (MWNTs) Synthesized by CCVD using Zeolite Template from Acetylene," J. Ceram. Soc. Jpn, 118 983-8 (2010). 

  62. K. P. De Jong and J. W. Geus, "Carbon Nanofibers: Catalytic Synthesis and Application," Catal. Rev.-Sci. Eng., 42 481-510 (2000). 

  63. J. Kong, A. M. Cassell, and H. J. Dai, "Chemical Vapor Deposition of Methane for Single-walled Carbon Nanotubes," Chem. Phys. Lett., 292 567-74 (1998). 

  64. J. H. Hafner, M. J. Bronikowski, B. R. Azomian, P. Nikolaev, A. G. Rinzler, D. T. Colbert, K. A. Smith, and R. E. Smalley, "Catalytic Growth of Single-wall Carbon Nanotubes from Metal Particles," Chem. Phys. Lett., 296 195-202 (1998). 

  65. P. M. Ajayan, "Nanotubes from Carbon," Chem. Rev., 99 1787-9 (1999). 

  66. M. Cinke, J. Li, B. Chen, A. Cassell, L. Delzeit, J. Han, and M. Meyyappan, "Pore Structure of Raw and Purified HiPco Single-walled Carbon Nanotubes," Chem. Phys. Lett., 365 69-74 (2002). 

  67. Z. Yao, C. L. Kane, and C. Dekker, "High-field Electrical Transport in Single-wall Carbon Nanotubes," Phys. Rev. Lett., 84 2941-4 (2000). 

  68. J. Hone, M. Whitney, C. Piskoti, and A. Zett, "Thermal Conductivity of Single-walled Carbon Nanotubes," Phys. Rev. B, 59 R2514-6 (1999). 

  69. S. Niyogi, M. A. Hamon, H. Hu, B. Zhao, P. Bhowmik, R. Sen, M. E. Itkis, and R. C. Haddon, "Chemistry of Singlewalled Carbon Nanotubes," Acc. Chem. Res., 35 1105-13 (2002). 

  70. E. T. Thosterson, C. Li, and T. W. Chou, "Nanocomposites in Context," Compos. Sci. Technol., 65 491-516 (2005). 

  71. M. Ouyang, J. L. Huang, and C. M. Lieber, "Fundamental Electronic Properties and Applications of Single-walled Carbon Nanotubes," Acc. Chem. Res. 35, 1018-25 (2002). 

  72. W. A. de Heer, A. Chatelain, and D. Ugarte, "A Carbon Nanotube Field-emission Electron Source," Science, 270 1179-80 (1995). 

  73. J. M. Bonard, J. P. Salvetat, T. Stockli, W. A. deHeer, L. Forro, and A. Chatelain, "Field Emission from Single-wall Carbon Nanotube Films," Appl. Phys. Lett., 73 918-20 (1998). 

  74. M. L. Toebes, J. H. Bitter, A. J. van Dillen, and K. P. de Jong, "Impact of the Structure and Reactivity of Nickel Particles on the Catalytic Growth of Carbon Nanofibers," Catal. Today, 76 33-42 (2002). 

  75. W. Zhao, M. J. Lee, H. T. Kim, and I. J. Kim, "The Synthesis of Carbon Nanotubes (CNTs) by Catalytic CVD Using A Fe/co-supported Zeolite Template," Electro. Mater. Lett., 7 139-44 (2011). 

  76. H. Ago, S. Imamura, T. Okazaki, T. Saitoj, M. Yumura, and M. Tsuji, "CVD Growth of Single-walled Carbon Nanotubes with Narrow Diameter Distribution over Fe/MgO Catalyst and their Fluorescence Spectroscopy," J. Phys. Chem. B, 109 10035-41 (2005). 

  77. K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura, and S. Iijima, "Water-assisted Highly Efficient Synthesis of Impurity-free Single-walled Carbon Nanotubes," Science, 306 1362-4 (2004). 

  78. R. Andews, D. Jacques, A. M. Rao, F. Derbyshire, D. Qian, X. Fan, E. C. dickey, and J. Chen, "Continuous Production of Aligned Carbon Nanotubes: A Step Closer to Commercial Realization," Chem. Phys. Lett., 303 467-74 (1999). 

  79. B. Kitiyanan, W. E. Alvarez, J. H. Harwell, and D. E. Resasco, "Controlled Production of Single-wall Carbon Nanotubes by Catalytic Decomposition of CO on Bimetallic Co- Mo Catalysts," Chem. Phys. Lett., 317 497-503 (2000). 

  80. D. Ding, J. Wang, Z. Cao, and J. Dai, "Synthesis of Carbon Nanostructures on Nanocrystalline $Ni-Ni_{3}P$ Catalyst Supported by SiC Whiskers," Carbon, 41 579-82 (2003). 

  81. C. L. Cheung, A. Kurtz, H. Park, and C. M. Lieber, "Diameter Controlled Synthesis of Carbon Nanotubes," J. Phys. Chem. B, 106 2429-33 (2002). 

  82. I. Willems, Z. Konya, J. F. Colomer, G. V. Tendeloo, N. Nagaraju, A. Fonseca, and J. B. Nagy, "Control of Outer Diameter of Thin Carbon Nanotubes Synthesized by Catalytic Decomposition of Hydrocarbons," Chem. Phys. Lett., 317 71-6 (2000). 

  83. M. Kumar and Y. Ando, "Controlling the Diameter Distribution of Carbon Nanotubes Grown from Camphor on a Zeolite Support," Carbon, 43 533-40 (2005). 

  84. J. Ward, B. Q. Wei, and P. M. Ajayan, "Substrate Effects on the Growth of Carbon Nanotubes by Thermal Decomposition of Methane," Chem. Phys. Lett., 376 717-25 (2003). 

  85. M. Karthik, A. Vinu, A. K. Tripathi, N. M. Gupta, M. Palanichamy, and V. Murugesan, "Synthesis, Characterization and Catalytic Performance of Mg and Co Substituted Mesoporous Aluminophosphates," Micropor. Mesopor. Mater., 70 15-25 (2004). 

  86. H. J. Lee, Y. M. Kim, O. S. Kweon, and I. J. Kim, "Structural and Morphological Transformation of NaX Zeolite Crystals at High Temperature," J. Eur. Ceram. Soc., 27 561-4 (2007). 

  87. I. J. Kim, W. Zhao, X. Fan, J. H. Chang, and L. J. Gauckler, "Effect of the $TEOS/Al(i-pro)_{3}$ Mol Ratio in the Composition on the Crystal Morphology of Zeolites," J. Ceram. Res. Proc., 11 158-63 (2010). 

  88. W. Zhao, M. J. Lee, H. T. Kim, and I. J. Kim, "The Synthesis of Carbon Nanotubes (CNTs) by Catalytic CVD Using Fe/Co-supported Zeolite Template," Electro. Mater. Lett., 7 139-44 (2011). 

  89. W. Zhao, D. N. Seo, H. S. Kim, H. T. Kim, and I. J. Kim, "Carbon Nanotubes Synthesized by Catalytic Chemical Vapour Deposition Using Fe-supported Zeolite," Asian J. Chem., 23 2314-8 (2011). 

  90. C. M. Veziri, G. N. Karanikolos, G. Pilatos, E. C. Vermisoglou, K. Giannakopoulos, C. Stogios, and N. K. Kanellopoulos, "Growth and Morphology Manipulation of Carbon Nanostructures on Porous Supports," Carbon, 47 2161-73 (2009). 

  91. K. Hernadi, A. Fonseca, J. B. Nagy, D. Bernaerts, A. Fudala, and A.A. Lucas, "Catalytic Synthesis of Carbon Nanotubes Using Zeolite Support," Zeolites, 17 416-23 (1996). 

  92. A. Fonseca, K. Hernadi, J. B. Nagy, D. Bernaerts, and A. Lucas, "Optimization of Catalytic Production and Purification of Buckytubes," J. Mol. Catal. A, 107 159-68 (1996). 

  93. W. Zhao, M. J. Lee, H. T. Kim, Y. J. Kim, J. H. Gong, and I. J. Kim, "Formation of Multi-walled Carbon Nanotubes by Catalytic Chemical Vapour Deposition Using Zeolite Encapsulated Nanocrystalline Cobalt Oxides," Asian J. Chem., 23 5457-60 (2011). 

  94. A. R. Harutyunyan, "Chemical Vapor Deposition of Carbon Nanotubes: A Review on Growth Mechanism and Mass Production," J. Nanosci. Nanotechnol., 9 2480 (2009). 

  95. W. Zhao, H. S. Kim, H. T. Kim, J. H. Gong and I. J. Kim, "Synthesis and Growth of Multi-walled Carbon Nanotubes (MWNTs) by CCVD Using Fe-supported Zeolite Templates," J. Ceram. Proc. Res., 12 ,392-7 (2011). 

  96. R. S. Wagner and W. C. Ellis, "Vapor-liquid-solid Mechanism of Single Crystal Growth," Appl. Phys. Lett., 4 89-90 (1964). 

  97. M. Kumar and Y. Ando, "Chemical Vapor Deposition of Carbon Nanotubes: A Review on Growth Mechanism and Mass Production," J. Nanosci. Nanotechnol., 10 3739-58 (2010). 

  98. R. T. K. Baker, M. A. Barber, P. S. Harris, F. S. Feates, and R. J. Waite, "Nuleation and Growth of Carbon Deposits from the Nickel Catalyzed Decomposition of Acetylene," J. Catalysis, 26 51-62 (1972). 

  99. R. T. K. Baker and R. J. Waite, "Formation of Carbonaceous Deposits from the Platinum-iron Catalyzed Decomposition of Acetylene," J. Catalysis, 37 101-5 (1975). 

  100. M. Meyyappan, "Carbon Nanotubes Science and Application," pp: 110-6, CRC Press LLC, 2005. 

  101. K. S. Trianatafyllidis, S. A. Karakoulia, D. Gournis, A. Delimitis, L. Nalbandian, E. Maccallini, and P. Rudolf, "Formation of Carbon Nanotubes on Iron/cobalt Oxides Supported on Zeolite-Y: Effect of Zeolite Textural Properties and Particles Morphology," Micropourous and Mesoporous Materials, 110 128-40 (2008). 

  102. M. J. Behr, K. A. Mkhoyan, and E. S. Aydil, "Orientation and Morphological Evolution of Catalyst Nanoparticles during Carbon Nanotube Growth," ACS Nano, 4 5087-94 (2010). 

  103. W. Zhao, H. S. Kim, D. N. Seo, H. T. Kim, and I. J. Kim, "Assembled Monolayer of Silicalite-1-supported Iron Oxide Nanoparticles for Carbon Nanotube Growth by Catalytic CVD (CCVD)," Asian J. Chem., 24 5249-52 (2012). 

  104. T. Hayashi, Y. A. Kim, T. Matoba, M. Esaka, K. Nishimura, T. Tsukada, M. Endo, and M. S. Dresselhaus, "Smallest Freestanding Single-walled Carbon Nanotube," Nano. Lett., 3 887-9 (2003). 

  105. J. S. Lee, J. H. Kim, Y. J. Lee, N. C. Jeong, and K. B. Yoon, "Manual Assembly of Microcrystal Monolayers on Substrates," Angew. Chem. Int. Ed., 46 3087-90 (2007). 

  106. L. D. Shao, G. Tobias, C. G. Salzmann, B. Ballesteros, S. Y. Hong, A. Crossley, B. G. Davis, and M. L. H. Green, "Removal of Amorphous Carbon for the Efficient Sidewall Functionalization of Single-walled Carbon Nanotubes," Chem. Commun., 5090-2 (2007). 

  107. A. C. Ferrari and J. Robertson, "Resonant Raman Spectroscopy of Disordered, Amorphous, and Diamondlike Carbon," Phys. Rev. B, 64 075414(1-13) (2001). 

  108. A. C. Ferrari and J. Robertson, "Origin of the 1150-cm-1 Raman Mode in Nanocrystalline Diamond," Phys. Rev. B, 63 121405(1-4) (2001). 

  109. S. Sun, H. Zeng, D. B. Robinson, S. Raoux, P. M. Rice, S. X. Wang, and G. Li, "Monodisperse $MFe_{2}O_{4}$ (M Fe, Co, Mn) Nanoparticles," J. Am. Chem. Soc., 126 ,273-9 (2004). 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD(Hybrid)

저자가 APC(Article Processing Charge)를 지불한 논문에 한하여 자유로운 이용이 가능한, hybrid 저널에 출판된 논문

이 논문과 함께 이용한 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로