$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

한반도 초염기성 포획암의 산소동위원소 비율
Oxygen Isotopic Ratios for Ultramafic Xenoliths from the Korean Peninsula 원문보기

한국지구과학회지 = Journal of the Korean Earth Science Society, v.34 no.1, 2013년, pp.28 - 40  

이정아 (서울교육대학교 창의융합교육연구센터) ,  김규한 (이화여자대학교 과학교육과) ,  이종익 (극지연구소 극지지구시스템연구부) ,  추미경 (이화여자대학교 과학교육과)

초록
AI-Helper 아이콘AI-Helper

한반도에서 산출되는 초염기성 맨틀포획암의 지화학적 특징과 평형 온도와 압력 조건을 계산하고, 산소동위원소비를 분석하였다. 연구 결과 (1) 한반도 맨틀포획암은 전형적인 초염기성 포획암(MgO: 49.12-50.95 wt.%, Mg값: 90.1-92.2)으로 구성되어 있다. (2) 한반도 맨틀포획암의 평형온도는 $854-1016^{\circ}C$이고, 압력은 4.6-24.4 kbar로 얻어졌다. (3) 맨틀포획암을 구성하는 감람석의 산소동위원소비(${\delta}^{18}O_{ol}$)는 5.06-5.51‰의 균질한 값으로 N-MORB와 상부 맨틀 감람석의 값(${\delta}^{18}O$: $5.2{\pm}0.2$‰)과 유사하다. 그러나 백두산과 제주도의 맨틀포획암을 구성하는 감람석의 산소동위원비는 각각 5.07-5.51‰과 5.07-5.45‰로 상대적으로 넓은 범위의 ${\delta}^{18}O$ 값을 갖고 있다. 이 결과를 바탕으로, 이 연구에서는 백두산 맨틀포획암의 높은 ${\delta}^{18}O$가 맨틀포획암 물질에 재순환된 퇴적물원 EM2 물질의 혼입 때문일 수 있다는 가능성을 제안하였다.

Abstract AI-Helper 아이콘AI-Helper

This study examined the geochemical characteristics, equilibrium temperature and pressure conditions, and oxygen isotopic ratios of mantle xenoliths from the various geological sites of the Korean peninsula. The results are as follows: (1) The ultramafic xenoliths from the Korean peninsula mainly co...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

대상 데이터

  • 6. The composition of orthopyroxenes are En89.9Fs15.1Wo1.0 from Baegdusan (XPD), En89.5Fs15.3Wo1.2 from Cheju (XCJ), En89.6Fs15.1Wo1.3 from Long Quan (XCY), En91.2Fs13.2Wo0.9 from Baegryoungdo (XBR), and En90.5Fs13.2Wo1.6 from Jogokri (XOC).
  • 4. The compositions of clinopyroxene are En48.4Fs6.1Wo47.4 from Baegdusan (XPD), En48.6Fs6.9 Wo46.7 from Chejudo (XCJ), En49.1Fs6.7 Wo46.3 from Long Quan (XCY), En49.5Fs5.7 Wo46.6 from Baegryoungdo (XBR), and En50.9Fs5.8 Wo45.2 from Jogokri (XOC). They have high Mg# between 91.
본문요약 정보가 도움이 되었나요?

참고문헌 (52)

  1. Adams, G.E. and Bishop, F.C., 1986, The olivineclinopyroxene geobarometer: Experimental results in the $CaO-FeO-MgO-SiO_2$ system. Contributions to Mineralogy and Petrology, 94, 230-237. 

  2. Ahn, I.S., Lee, J.I., Kusakabe, M., and Choi B.-G., 2012, Oxygen isotope measurements of terrestrial silicates using a $CO_2-laser$ $BrF_5$ fluorination technique and the slope of terrestrial fractionation line. Geosciences Journal, 16, 7-16. 

  3. Arai, S., Kida, M., and Abe, N., 2001, Petrology of peridotite xenoliths in alkali basalt (11Ma) from Boun, Korea: An insight into the upper mantle beneath the East Asian continental margin. Journal of Mineralogical and Petrological Sciences, 96, 89-99. 

  4. Arai, S., Abe, N., and Ishimaru, S., 2007, Mantle peridotites from the Western Pacific. Gondwana Research, 11, 180-199. 

  5. Ballhaus, C., Berry, R.G., and Green, D.H., 1991, High pressure experimental calibration of the olivineorthopyroxene-spinel oxygen geobarometer: Implications for the oxidation state of the upper mantle. Contributions to Mineralogy and Petrology, 107, 27-40. 

  6. Basu, A.R., Junwen, W., Wankang, H., and Guanghong, X., 1991, Major element, REE, and Pb, Nd and Sr isotopic geochemistry of Cenozoic volcanic rocks of eastern China: Implications for their origin from suboceanic-type mantle reservoirs. Earth and Planetary Science Letters, 105, 149-169. 

  7. Bertrand, P. and Mercier, J.C., 1985, The mutual solubility of coexisting ortho- and clinopyroxene: Toward and absolute geothermometer for the natural system? Earth and Planetary Science Letters, 76, 109-122. 

  8. Brey, G.P. and Kohler, T., 1990, Geothermometry in four phase lherzolite II, New thermometers and practical assessment of existing thermobarometers. Journal of Petrology, 31, 1358-1378. 

  9. Chang, S.-J. and Baag, C.-E., 2007, Moho depth and crustal Vp/Vs variation in southern Korea from teleseismic receiver functions: Implication for tectonic affinity between the Korean peninsula and China. Bulletin of the Seismological Society of America, 97, 1621-1631. 

  10. Chen, Y., Zhang, Y., Graham, D., Su, S., and Deng, J., 2007, Geochemistry of Cenozoic basalts and mantle xenoliths in Northeast China. Lithos, 96, 108-126. 

  11. Choi, S.H., Jaw, Y., and Lee, H., 2001, Geothermal gradient of the upper mantle beneath Jeju Island, Korea: Evidence from mantle xenoliths. The Island Arc, 10, 175-193. 

  12. Choi, S.H., Lee, J.I., Park, C.-H., and Moutte, J., 2002, Geochemistry of peridotite xenoliths in alkali basalts from Jeju island, Korea. The Island Arc, 11, 221-235. 

  13. Choi, S.H. and Kwon, S.-T., 2005, Mineral chemistry of spinel peridotite xenoliths from Baengnyeong Island, South Korea, and its implications for the paleogeotherm of the uppermost mantle. The Island Arc, 14, 236-253. 

  14. Choi, S.H., Kwon, S.-T., Mukasa, S.B., and Sagong, H., 2005, Sr-Nd-Pb isotope and trace element systematic of mantle xenoliths from Late Cenozoic alkaline lavas. South Korea. Chemical Geology, 221, 40-64. 

  15. Chough, S.K., Kwon, S., Ree, J., and Choi, D.K., 2000, Tectonic and sedimentary evolution of the Korean peninsula: A review and new view. Earth-Science Reviews, 52, 175-235. 

  16. Cohen, R.S., O'Nions, R.K., and Dawson, J.B., 1984, Isotope geochemistry of xenoliths form East Africa: Implications for development of mantle reservoirs and their interaction. Earth and Planetary Science Letters, 68, 209-220. 

  17. Eiler, J.M., 2001, Oxygen isotope variations of basaltic lavas and upper mantle rocks. In Valley, J.W. and Cole, D.R., (eds.), Stable isotope geochemistry: Reviews in Mineralogy and Geochemistry, Volume 43. Washington, D.C., Mineralogical Society of America, USA, 319-364. 

  18. Eiler, J.M., Farley, K.A., Valley, J.W., Stolper, E.M., Hauri, E.H., and Craig, H., 1995, Oxygen isotope evidence against bulk recycled sediment in the mantle sources of Pitcairn Island lavas. Nature, 377, 14, 138-141. 

  19. Eiler, J.M., Mclnnes, B., Valley, J.W., Graham, C.M., and Stolper, E.M., 1998, Oxygen isotope evidence for slabderived fluids in the sub-arc mantle. Nature, 393, 777-781. 

  20. Eiler, J.M., Rarley, K.A., Valley, J.W., Hauri, E., Craig, H., Hart, S.R., and Stolper, E.M., 1997, Oxygen isotope variations in ocean island basalt phenocrysts. Geochimica et Cosmochimica Acta, 61, 2281-2293. 

  21. Gurenko, A.A., Bindeman, I.N., and Chauyssidon, C., 2011, Oxygen isotope heterogeneity of the mantle beneath the Canary islands: Insights from olivine phenocrysts. Contributions to Mineralogy and Petrology, 162, 349-363. 

  22. Han, U. and Keehm, Y., 1997, Thermal stress distributions within the lithosphere of East Sea of Korea. Journal of Korean Earth Science Society, 18, 176-182. 

  23. Harmon, R.S. and Hoefs, J., 1995, Oxygen isotope heterogeneity of the mantle deduced from global $^{18}O$ systematic of basalts from different geotectonic settings. Contributions to Mineralogy and Petrology, 120, 95-114. 

  24. Hart, S.R., 1988, Heterogeneous mantle domains: Signatures, genesis, and mixing chronologies. Earth and Planetary Science Letters, 90, 273-296. 

  25. Hart, S.R., Hauri, E.H., Oschmann, L.A., and Whitehead, J.A., 1992, Mantle plumes and entrainment:Isotopic evidence, Science, 256, 517-520. 

  26. Irving, A.J., 1980, Petrology and geochemistry of composite ultramafic xenoliths in alkali basalts and implications for magmatic processes within the mantle. American Journal of Science. 280A, 389-426. 

  27. Kil, Y.-W., 2006, Characteristics of subcontinental lithospheric mantle beneath Baegryeong Island, Korea: Spinel peridotite xenoliths. The Island Arc, 15, 269-282. 

  28. Kil, Y.-W., 2007, Geochemistry and petrogenesis of spinel lherzolite xenoliths from Boeun, Korea. Journal of Asian Earth Sciences, 29, 29-40. 

  29. Kil, Y., Shin, H., Yun, S., Koh, J., and Ahn, U., 2008, Geochemical characteristics of mineral phases in the mantle xenoliths from Sunheul-ri, Jeju Island. Journal of Mineralogical Society of Korea, 21, 373-382. 

  30. Kim, K.H., Tanaka, T., Nagao, K., and Jang, S.K., 1999, Nd and Sr isotopes and K-Ar ages of the Ulreungdo alkali volcanic rocks in the East Sea, South Korea. Geochemical Journal, 33, 317-341. 

  31. Kim, K.H., Tanaka, T., Suzuki, K., Nagao, K., and Park, E.J., 2002, Evidences of the presence of old continental basement in Cheju volcanic Island, South Korea, revealed by radiometric ages and Nd-Sr isotopes of granitic rocks. Geochemical Journal, 36, 421-441. 

  32. Kim, K.H., Nagao, K., Tanaka, T., Sumino, H., Nakamura, T., Okuno, M., Lock, J.B., Youn, J.S., and Song, J., 2005, He-Ar and Nd-Sr isotopic compositions of ultramafic xenoliths and host alkali basalts from the Korean peninsula. Geochemical Journal, 39, 341-356. 

  33. Kohler, T.P. and Brey, G.P., 1990, Calcium exchange between olivine and clinopyroxene calibrated as a geobarometer for natural peridotites from 2 to 60 kb with applications. Geochimica et Cosmochimica Acta, 54, 2375-2388. 

  34. Kusakabe, M., Maruyama, S., Nakamura, T., and Yada, T., 2004, $CO_2$ $laser-BrF_5$ fluorination technique for analysis of oxygen three isotopes of rocks and minerals. Journal of Mass Spectrometry Society of Japan, 52, 205-212. 

  35. Lee, H.Y., 1996, Petrochemical study of mantle xenoliths in alkali basalts from South Korea: P/T regime of the upper mantle. International Geology Review, 38, 320-335. 

  36. Lee, S.R., Cho, M., Hwang, J.H., Lee, B., Kim, Y., and Kim, J.C., 2003, Crustal evolution of the Gyeonggi massif, South Korea: Nd isostopic evidence and implications for continental growths of East Asia. Precambrian Research, 121, 25-34. 

  37. Lee, S.R. and Walker, R.J., 2006, Re-Os isotope systematic of mantle xenoliths from South Korea: Evidence for complex growth and loss of lithospheric mantle beneath East Asia. Chemical Geology, 231, 90-101. 

  38. Mattey, D., Lowry, D., and Macpherson, C., 1994, Oxygen isotope composition of mantle peridotite. Earth and Planetary Science Letters, 128, 231-241. 

  39. Nardini, I., Armienti, P., Rocchi, S., Dallai, L., and Harrison, D., 2009, Sr-Nd-Pb-He-O isotope and geochemical constraints on the genesis of Cenozoic magmas from the West Antarctic Rift. Journal of Petrology, 50, 1359-1375. 

  40. Perinelli, C., Armienti, P., and Dallai, L., 2011, Thermal evolution of the lithosphere in a rift environment as inferred from the geochemistry of mantle cumulates, Northern Victoria Land, Antarctica. Journal of Petrology, 52, 665-690. 

  41. Pollack, H.N. and Champman, D.S., 1977, On the regional variation of heat flow, geotherms and lithospheric thickness. Tectonophysics, 38, 279-296. 

  42. Putirka, K.D., 2008, Thermometers and barometers for volcanic systems. Reviews in Mineralogy and Geochemistry, 69, 61-120. 

  43. Ree, J., Cho, M., Kwon, S., and Nakamura, E., 1996, Possible eastward extension of Chinese collision belt in South Korea: The Imjingang belt. Geology, 24, 1071-1074. 

  44. Shim, J.Y., 2003, Geochemistry of Quaternary pumices and mantle xenoliths from the Baekdusan volcanic area. Unpublished M.S. thesis, Ewha Womans University, Seoul, Korea, 90 p. 

  45. Song, Y. and Frey, F.A., 1989, Geochemistry of peridotite xenoliths in basalt from Hannuoba, Eastern China: Implications for subcontinental mantle heterogeneity. Geochimica et Cosmochimica Acta, 53, 97-113. 

  46. Wells, P.R.A., 1977, Pyroxene thermometry in simple and complex systems. Contributions to Mineralogy and Petrology, 62, 129-139. 

  47. Widom, E. and Farquhar, J., 2003, Oxygen isotope signatures in olivines from Sao Miquel (Azores) basalts: Implications for crustal and mantle processes. Chemical Geology, 193, 237-255. 

  48. Wood, B.J. and Banno, S., 1973, Garnet-orthopyroxene and orthopyroxene-clinopyroxene relationships in simple and complex system. Contributions to Mineralogy and Petrology, 42, 109-124. 

  49. Workman, R.K., Eiler, J.M., Hart, S.R., and Jackson, M.G., 2008, Oxygen isotopes in Samoan lavas: Confirmation of continent recycling. Geology, 36, 551-554. 

  50. Zhang, H.-F., Sun, M., Zhou, M.-F., Fan, W.-M., Zhou, X.-H., and Zhai, M.-G., 2004, Highly heterogeneous late Mesozoic lithospheric mantle beneath north China craton: Evidence from Sr-Nd-Pb isotopic systematic of mafic igneous rocks. Geological Magazine, 141, 55-62. 

  51. Zhou, X., Sun, M., Zhang, G., and Chen, S., 2002, Continental crust and lithospheric mantle interaction beneath North China: Isotopic evidence from granulite xenoliths in Hannuoba, Sino-Korean craton. Lithos, 62, 111-124. 

  52. Zindler, A. and Hart, S.R., 1986, Chemical geodynamics. Annual Review of Earth and Planetary Sciences, 14, 493-571. 

저자의 다른 논문 :

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로