$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

UV-curing Behaviors and Mechanical Properties of UV-cured Polylactic Acid (PLA) 원문보기

목재공학 = Journal of the Korean wood science and technology, v.41 no.2, 2013년, pp.134 - 140  

Lee, Seung-Woo (Laboratory of Adhesion & Bio-Composites, Program in Environmental Materials Science, Research Institute for Agriculture & Life Science, Seoul National University) ,  Park, Ji-Won (Laboratory of Adhesion & Bio-Composites, Program in Environmental Materials Science, Research Institute for Agriculture & Life Science, Seoul National University) ,  Park, Cho-Hee (Laboratory of Adhesion & Bio-Composites, Program in Environmental Materials Science, Research Institute for Agriculture & Life Science, Seoul National University) ,  Kim, Hyun-Joong (Laboratory of Adhesion & Bio-Composites, Program in Environmental Materials Science, Research Institute for Agriculture & Life Science, Seoul National University) ,  Eom, Young-Geun (Department of Forest Products & Biotechnology, College of Forest Science, Kookmin University)

Abstract AI-Helper 아이콘AI-Helper

UV curing was introduced via a chemical treatment by adding small amounts of a hexafunctional acrylic monomer and a photoinitiator to improve the mechanical properties of PLA. This study also employed a semi-interpenetrated structured polymer network through the process of UV-curing. The UV curing b...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • The main objective of this study is to improve and modify film produced from PLA by adding a hexafunctional monomer to enhance the mechanical properties of PLA. The UV-curing behaviors are investigated using FTIR-ATR spectroscopy and gel fraction determination. Also, the tensile strength was investigated with different hexafunctional acrylic monomer contents and UV doses.
  • The resolution of the recorded spectra was 4 cm-1. The curing behavior of the UV-curable PLA film was analyzed by observing the changes in the deformation of the C=C bonds at 810 cm-1. Also, all FTIR-ATR spectra were modified by means of baseline correction.
  • The main objective of this study is to improve and modify film produced from PLA by adding a hexafunctional monomer to enhance the mechanical properties of PLA. The UV-curing behaviors are investigated using FTIR-ATR spectroscopy and gel fraction determination.

대상 데이터

  • 24 g/m3 was purchased from Nature Works LLC. Dipentaerythritol hexacrylate (DPHA, Miwon Specialty Chemical, Republic of Korea) was used as the hexafunctional monomer. Fig.

이론/모형

  • The tensile test was done according to ASTM D638-08 with a texture analyzer (Micro Stable Systems, TA-XT2i) at a crosshead speed of 5 mm/min and room temperature. Five specimens were measured to determine the value and the deviations.
본문요약 정보가 도움이 되었나요?

참고문헌 (31)

  1. Eling, B., S. Gogolewski, and A. Pennings. 1982. Biodegradable materials of poly(l-lactic acid): 1. Melt-spun and solution-spun fibres. Polymer. 23(11): 1587-1593. 

  2. Pluta, M. 2004. Morphology and properties of polylactide modified by thermal treatment, filling with layered silicates and plasticization. Polymer. 45(24): 8239-8251. 

  3. Rasal, R. M., A. V. Janorkar, and D. E. Hirt. 2010. Poly(lactic acid) modifications. Prog. Polym. Sci. 35(3): 338-356. 

  4. Li, T. N., L. S. Turng, S. Q. Gong, and K. Erlacher. 2006. Polylactide, nanoclay, and core-shell rubber composites. Polym. Eng. Sci. 46(10): 1419-1427. 

  5. Anderson, K. S., S. H. Lim, and M. A. Hillmyer. 2003. Toughening of polylactide by melt blending with linear low-density polyethylene. J. Appl. Polym. Sci. 89(14): 3757-3768. 

  6. Dorgan, J. R., H. Lehermeir, and M. Mang. 2000. Thermal and Rheological Properties of Commercial-Grade Poly(Lactic Acid)s. J. Polym. Environ. 8(1): 1-9. 

  7. Xu, H., C. Q. Teng, and M. H. Yu. 2006. Improvements of thermal property and crystallization behavior of PLLA-based multiblock copolymer by forming stereocomplex with PDLA oligomer. Polymer. 47(11): 3922-3928. 

  8. Shibata, M., N. Teramoto, and Y. Inonue. 2007. Mechanical properties, morphologies, and crystallization behavior of plasticized poly(l-lactide)/poly(butylene succinate-co-llactate) blends. Polymer. 48(9): 2768-2777. 

  9. Nugroho, P., H. Mitomo, F. Yoshii, and T. Kume. 2001. Degradation of poly(l-lactic acid) by r-irradiation. Polym. Degrad. Stab. 72(2): 337-343. 

  10. Urayama, H., T. Kanamori, K. Fukushima, and Y. Kimura. 2003. Controlled crystal nucleation in the melt-crystallization of poly(l-lactide) and poly(l-lactide)/poly(d-lactide) stereocomplex. Polymer. 44(19): 5635-5641. 

  11. Tsuji, H. and Y. Ikada. 1995. Properties and morphologies of poly(l-lactide): 1. Annealing condition effects on properties and morphologies of poly(l-lactide). Polymer. 36(14): 2709-2716. 

  12. Ogata, N., G., Jimenez, H., Kawai, and T. Ogihara. 1997. Structure and thermal/ mechanical properties of poly(l-lactide)-clay blend. J. Polym. Sci., Part B: Polym. Phys. 35(2): 389-396. 

  13. Urayama, H., C. H. Ma, and Y. Kimura. 2003. Mechanical and Thermal Properties of Poly(L-lactide) Incorporating Various Inorganic Fillers with Particle and Whisker Shapes. Macromol. Mater. Eng. 288(7): 562-568. 

  14. Trimaille, T., C. Pichot, A. Elaissari, H. Fessi, S. Briancon, and T. Delair. 2003. Poly(d,l-lactic acid) nanoparticle preparation and colloidal characterization. Colloid Polym. Sci. 281(12): 1184-1190. 

  15. Hu, X., H. S. Xu, and Z. M. Li. 2007. Morphology and Properties of Poly(L-Lactide) (PLLA) Filled with Hollow Glass Beads. Macromol. Mater. Eng. 292(5): 646-654. 

  16. Wan, Y. Z., Y. L. Wang, X. H. Xu, and Q. Y. Li. 2001. In vitro degradation behavior of carbon fiber-reinforced PLA composites and influence of interfacial adhesion strength. J. Appl. Polym. Sci. 82(1): 150-158. 

  17. Li, B. H. and M. C. Yang. 2006. Improvement of thermal and mechanical properties of poly(L-lactic acid) with 4,4-methylene diphenyl diisocyanate. Polym. Adv. Technol. 17(6): 439-443. 

  18. Di, Y. W., S. Iannace, E. Di Maio, and L. Nicolais. 2005. Reactively modified poly(lactic acid): properties and foam processing. Macromol. Mater. Eng. 290(11): 1083-1090. 

  19. Yang, S.-L., Z.-H. Wu, W. Yang, and M.-B. Yang. 2008. Thermal and mechanical properties of chemical crosslinked polylactide (PLA). Polymer Testing 27(8): 957-963. 

  20. Park, Y.-J., D.-H. Lim, H.-J. Kim, D.-S. Park, and I.-K. Sung. 2009. UV- and thermal- curing behaviors of dual-curable adhesives based on epoxy acrylate oligomers. Int. J. Adhes. Adhes. 29(7): 710-717. 

  21. Dufour, P., J. P. Fouassier, J. F. Rabek, and editors. 1993. Radiation curing in polymer science and technology. Vol.1. London: Elsevier Science Publisher. 

  22. Xiao, P., Y. Wang, M. Dai, G. Wu, S. Shi, and J. Nie. 2007. Synthesis and photopolymerization kinetics of benzophenone piperazine one-component initiator. J. Polym. Adv. Technol. 19(5): 409-413. 

  23. Bayramoglu, G., M. V. Kahraman, N. Kayaman-Apohan, and A. Gungor. 2006. Synthesis and characterization of UV-curable dual hybrid oligomers based on epoxy acrylate containing pendant alkoxysilane groups. Prog. Org. Coat. 57(1): 50-55. 

  24. Kayaman, N. A., R. Demirci, M. Cakir, and A. Gungor. 2005. UV-curable interpenetrating polymer networks based on acrylate/vinyl ether functionalized urethane oligomers. Radiat. Phys. Chem. 73(5): 254-262. 

  25. Joo, H.-S., Y.-J. Park, H.-S. Do, H.-J. Kim, S.-Y. Song, and K.-Y. Choi. 2007. The curing performance of UV-curable semi-interpenetrating polymer network structured acrylic Pressure-sensitive adhesives. J. Adhesion Sci. Technol. 21(7): 575-588. 

  26. Auchter, G., O. Aydin, A. Zettl, and D. Satas. 1999. Handbook of pressure sensitive adhesive technology, D. Satas (Ed.), Satas Associates, Warwick, RI. 444-514. 

  27. Chattopadhyay, D. K., S. S. Panda, and K. V. S. N. Raju. 2005. Thermal and mechanical properties of epoxy acrylate/methacrylates UV cured coatings. Prog. Org. Coat. 54(1): 10-19. 

  28. Do, H.-S., Y.-J. Park, and H.-J. Kim. 2006. Preparation and adhesion performance of UV-crosslinkable acrylic pressure sensitive adhesives. J. Adhesion Sci. Technol. 20(13): 1529-1545. 

  29. Kajtna, J., B. Likozar, J. Golob, and M. Krajnc. 2008. The influence of the polymerization on properties of an ethylacrylate / 2-ehtyl hexylacrylate pressure-sensitive adhesive suspension. Int. J. Adhes. Adhes. 28(7): 382-390. 

  30. Kajtna, J., J. Golob, and M. Krajnc. 2008. The effect of polymer molecular weight and crosslinking reactions on the adhesion properties of microsphere water-based acrylic pressure-sensitive adhesives. Int. J. Adhes. Adhes. 29(2): 186-194. 

  31. Kajtna, J. and U. Sebenik. 2009. Microsphere pressure sensitive adhesive acrylic polymer/ montmorillonite clay nanocomposite materials. Int. J. Adhes. Adhes. 29(5): 543-550. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로