$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Abstract AI-Helper 아이콘AI-Helper

An analysis of the junction capacitance in resonant rectifiers which has a significant impact on the operating point of resonance circuits is studied in this paper, where the junction capacitance of the rectifier diode is to decrease the resonant current and output voltage in the circuit when compar...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • Due to the effect of the junction capacitance, it is very difficult to design all of the parameters for the converter [15-16]. The objective of this paper is to introduce an analysis of the junction capacitance in a half bridge rectifier diode which has a significant impact on the operating point of the resonance circuit. This is accomplished by using the principle of a half bridge class-DE rectifier with a push-pull resonant converter.

가설 설정

  • The waveforms of the input current and resonant current are shown in Fig. 14. These waveforms show that the input and resonant currents become close to sinusoidal. The waveforms of the switch voltage and switch current of M1 are depicted in Fig.
  • The principle of operation of the half bridge class-DE rectifier with a push-pull resonant converter is explained by the waveforms shown in Fig. 3. The main switches and the rectifier diodes can operate under ZVS and ZCS conditions, respectively. It is reasonable to consider the transformer secondary side as a sinusoidal current source ir, which is also the input current source of the half bridge class-DE rectifier.
  • The analysis of the junction capacitance in the half bridge class-DE resonant rectifier for push-pull ZVS resonant converters is demonstrated by the equivalent circuit, as shown in Fig. 5. The diode, D1, of the half bridge class-DE resonant rectifier operates during the positive half-cycle of the high-frequency transformer secondary side square-wave voltage, while the equivalent circuits of secondary side of the high-frequency transformer are modeled by a squarewave voltage source, uS. The fundamental component is uS(t) = VSsinwst, where wis the switching angular frequency and the diode, D2 , operates during the negative half-cycle.
  • The plots of the magnitude of the AC/DC voltage transfer function Vout/VS versus the operating frequency fs/fr at varied values of the resonant capacitor, Cr, are shown in Fig. 6. It can be seen the impact of the junction capacitance of the rectifier diode cannot be neglected, because the junction capacitance is to decrease the output voltage of the proposed circuit. The range of QL is from 1.
  • 7. Find the value of output capacitor, CO, choose the ripple voltage and assume that the CO is large enough.
  • With the above design, the operating region of the converter is shown as the shaded area in Fig. 7. It can be seen from the operating region that under a light load, the switching frequency needs to increase a great deal to keep the output voltage regulated. This is a main drawback for series resonant converters.
본문요약 정보가 도움이 되었나요?

참고문헌 (20)

  1. M.J. Ryan, W. E. Brumsickle, D.M. Divan, and R.D. Lorenz, "A new ZVS LCL-resonant push-pull DC-DC converter topology," IEEE Trans. Power Electron., Vol. 34, No. 5, pp. 1164-1174, Sep./Oct.1998. 

  2. I. Boonyaroonate and S. Mori, "A new ZVCS resonant push-pull DC/DC converter topology," 17th Annual IEEE Applied Power Electronics Conference and Exposition, Vol. 2, pp. 1097-1100, 2002. 

  3. D. H. Han, Y. J. Lee, W. S. Kwon, M. A. B. Rabee, and G. H. Choe, "Improving the overall efficiency for DC/DC converter with LoV-HiC system," Journal of Power Electronics, Vol. 12, No. 3, pp. 418-428, May 2012. 

  4. A. Emadi, and S.S. Williamson, "Status review of power electronic converters for fuel cell application," Journal of Power Electronics, Vol. 1, No. 2, pp. 133-144, Oct. 2001. 

  5. J. M. Han, B. H. Jeong, J. S. Srok, and G. H. Choe, "Analysis of PWM converter for V-I output characteristics of solar cell," Journal of Power Electronics, Vol. 1, No. 2, pp. 62-67, Oct. 2003. 

  6. P. Thounthong, S. Rael, and B. Davat, "Control algorithm of fuel cell and batteries for distributed generation system," IEEE Trans. Energy Convers., Vol. 23, No. 1, pp. 148-155, Mar. 2008. 

  7. P. Thounthong, B. Davat, S. Rael, and P. Sethakul, "Fuel cell high power applications," IEEE Industrial Electronics Magazine, Vol. 3, No. 1, pp. 32-46, Mar. 2009. 

  8. P. Thounthong, S. Rael, and B. Davat, "Energy management of fuel cell/battery/supercapacitor hybrid power source for vehicle applications," Journal of Power Sources, Vol. 193, No. 1, pp. 376-385, Jan. 2009. 

  9. B.R. Lin and L.A. Lin, "Analysis and implementation of a DC-DC converter with an active snubber," Journal of Power Electronics, Vol. 11, No. 6, pp. 779-786, Nov. 2011. 

  10. M. Borage, K. V. Nagesh, M. S. Bhatia, and Sunil Tiwari, "Approximate equivalent-circuit modeling and analysis of type-II resonant immittance converters," Journal of Power Electronics, Vol. 12, No. 2, pp. 371-325, Mar. 2012. 

  11. D. Han, Y. Lee, B. Jeong, and G. Choe, "Multi-level resonant push-pull converter for fuel cell system," 8th IEEE International Conference on Power Electronics and ECCE Asia (ICPE & ECCE), pp. 1901-1907, 2011. 

  12. B. R. Lin and S. J. Shen, "Interleaved ZVS resonant converter with a parallel-series connection," Journal of Power Electronics, Vol. 12, No. 4, pp. 528-537, Jul. 2012. 

  13. C. L. Chu and C. H. Li, "Analysis and design of a currentfed zero-voltage-switching and zero-current-switching CL-resonant push-pull DC-DC converter," IET Power Electronics, Vol. 2, No. 4, pp. 456 -465, Jul. 2009. 

  14. J. M. Blanes, A. Garrigos, J. A. Carrasco, J. E. Marti, and E. S. Kilders, "High-efficiency regulation method for a zero-current and zero-voltage current-fed push-pull converter," IEEE Trans. Power Electron., Vol. 26, No.2, pp. 444-452, Feb. 2011. 

  15. Z. Yao, L. Xiao, Y. Huang, and W. Yang, "Push-pull forward three-level converter for high-voltage fuel cell applications," IEEE International Conference on Electrical Machines and Systems, pp. 2698-2703, 2008. 

  16. Y. Du, G. Wang, J. Wang, S. Bhattacharya, and A. Q. Huang, "Modeling of the impact of diode junction capacitance on high voltage high-frequency rectifiers based on 10kV SiC JBS diodes," IEEE International Conference on Energy Conversion Congress and Exposition, pp. 105-111, 2010. 

  17. J. H. Jung, J. M. Choi, and J. G. Kwon, "Design methodology for transformers including integrated and center-tapped structures for LLC resonant converters," Journal of Power Electronics, Vol. 9, No. 2, pp. 215-223, Mar. 2009. 

  18. D. C. Hamill, "Class-DE inverters and rectifiers for DC-DC conversion," IEEE Power Electronics Specialists Conference, Vol. 1, pp. 854-860, 1996. 

  19. C. Ekkaravarodome, A. Nathakaranakule, and I. Boonyaroonate, "Single-stage electronic ballast using Class-DE low- $d\upsilon$ /dt current-source driven rectifier for power-factor correction," IEEE Trans. Ind. Electron., Vol. 57, No. 10, pp. 3405-3414, Oct. 2010. 

  20. C. Ekkaravarodome and K. Jirasereeamornkul, "Single-stage high-power factor electronic ballast with a symmetrical Class-DE resonant rectifier," Journal of Power Electronics, Vol. 12, No. 3, pp. 429-438, May 2012. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD(Hybrid)

저자가 APC(Article Processing Charge)를 지불한 논문에 한하여 자유로운 이용이 가능한, hybrid 저널에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로