$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 유추를 활용한 코사인 법칙의 일반화 지도방안
A Study on Teaching Methods of Extension of Cosine Rule Using Analogy 원문보기

韓國學校數學會論文集 = Journal of the Korean school mathematics society, v.16 no.4, 2013년, pp.927 - 941  

김성수 (대전반석고등학교) ,  박달원 (공주대학교)

초록

본 연구에서는 고등학교 학생들이 삼각형에 대한 코사인 법칙으로부터 사각형과 n각형에 대한 코사인 법칙을 유추적 사고를 통하여 발견하는 과정을 조사하였으며 삼각형에 대한 코사인 법칙에 대한 충분한 이해가 일반화된 법칙을 발견하고 증명하는데 어느 정도 영향을 미치는지를 분석하였다. 이와 같이 귀납적 추론이나 유추적 사고 활동을 통해 학생 스스로 지식을 발견하고, 스스로 발견한 수학적 지식을 논리적 추론이나 연역적 증명을 통해 정당화하는 경험을 쌓을 수 있을 때, 학생들은 이 지식을 자신의 것으로 내면화할 수 있게 되고, 다양한 상황에 자유롭게 활용할 수 있는 능력을 가질 수 있을 것이다.

Abstract AI-Helper 아이콘AI-Helper

In this paper, we investigate and analysis high school students' generalization of cosine rule using analogy, and we study teaching and learning methods improving students' analogical thinking ability to improve mathematical thinking process. When students can reproduce what they have learned throug...

Keyword

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 연구에서는 인문계 고등학교 3학년 자연계열 학생들이 삼각형에 대한 코사인법칙으로부터 사각형과 n각형에 대한 코사인법칙을 어느 정도 일반화시킬 수 있는지를 알아보고 그 과정에서 나타난 학생들의 사고 유형과 유추과정을 분석하였다.
  • 본 연구는 대전시에 소재하고 있는 A고등학교 3학년 자연계열 상위 20%이내에 있는 학생 15명을 선정하여 이 학생들이 삼각형에 대한 코사인법칙으로부터 n각형에 대한 코사인법칙을 어느 정도 일반화시킬 수 있는지를 알아보고 그 과정에서 나타난 학생들의 사고 유형을 분석하여 학생들의 유추능력을 파악하고자 다음과 같은 연구문제를 설정하였다.
  • 따라서 학생들의 유추적 사고력을 신장시키는 교육은 매우 중요하다고 볼 수 있다. 본 연구에서는 삼각형에 대한 코사인 법칙으로부터 일반화된 코사인 법칙을 학생들이 어떻게 추측하는지를 조사하였다. 본 연구에 참여한 학생들은 조사대상 학교에서 수학성적이 상위 20%이내인 비교적 우수한 학생들이기 때문에 본 연구 결과를 일반화하는 데에는 많은 어려움이 있다고 볼 수 있지만 본 연구를 통하여 학생들의 유추적 사고 과정을 분석하고 유추적 사고를 촉진시키는 요소를 도출하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
유추란? 유추란 몇몇 성질이나 관계를 공통으로 갖는 두 개의 사물이나 문제에 대하여 한 대상이 갖는 성질이나 법칙이 다른 대상에도 이와 동일하거나 유사한 성질 또는 법칙이 있을 것으로 추리하는 것을 말한다.
유추에 의한 문제해결을 유추적 전이라고 하는 이유는? 유추에 의한 문제 해결은 현재의 문제를 이전에 경험했던 유사한 문제에 대한 지식과 연결시키고 이를 기초하여 두 문제간의 유사성을 추론함으로서 주어진 문제를 해결하는 것을 말한다(Chen, 1996). 유추에 의한 문제해결은 유추적 전이(analogical transfer)라고도 하는데 그 이유는 이전의 문제해결에서 습득한 지식을 새로운 문제해결에 적용하는 데에 지식의 전이가 일어나기 때문이다(Holyoak & Thagard, 1995).
유추를 이용한 코사인정리의 법칙 도출은 어떻게 이루어지는가? 한인기(2007)는 유추를 통한 코사인정리의 일반화에 대한 방안을 제시하였다. 삼각형 ABC에서 세 변 BC,CA,AB의 길이를 각각 a,b,c라 하고, 두 변 AB와 CA가 이루는 각의 크기를 [bc]라고 하면 코사인 법칙 a2 = b2 + c2 - 2bc cos[bc]가 성립한다.
질의응답 정보가 도움이 되었나요?

저자의 다른 논문 :

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로