$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

수치모델링 실험을 통한 서해 천수만의 조류와 조석잔차류 특성
Characteristics of Tidal Current and Tidal Residual Current in the Chunsu Bay, Yellow Sea, Korea based on Numerical Modeling Experiments 원문보기

한국해안·해양공학회논문집 = Journal of Korean Society of Coastal and Ocean Engineers, v.25 no.4, 2013년, pp.207 - 218  

정광영 (충남대학교 자연과학대학 해양환경과학과) ,  노영재 (충남대학교 자연과학대학 해양환경과학과) ,  김백진 (충남대학교 자연과학대학 해양환경과학과)

초록
AI-Helper 아이콘AI-Helper

수치 모델링 실험을 활용하여 서해 천수만의 해수 유동과 그 변화를 이해하기 위한 연구를 수행했다. 모델링 실험 결과에 대한 검증을 위해 관측 자료의 조위와 조류 각각 4대 분조의 진폭과 위상을 이용하여 스킬 분석을 실시했다. 그 결과 스킬 점수는 대부분 90%가 넘는 것으로 보아 수치 모델링 실험 결과는 관측된 조위와 조류가 양호하게 일치하는 것으로 나타났다. 천수만의 조석파는 만 입구에서 안쪽으로 진행되며 북부로 갈수록 조차는 점차 증가했다. 조석파가 북부까지 도달하는데 약 10~30분의 시간이 소요되었다. 남부에서 조석파는 반시계 방향으로 회전하는 특성을 보였다. 조류는 해저 지형을 따라 남-북 방향으로 흘렀으며, 장축의 각도는 등수심선과 나란히 나타났다. 조류타원의 단축이 장축의 10% 이하로 왕복성 조류의 특성을 보였다. 수심과 해안선 등 지형적 요인에 의해 좌우되는 조석잔차류의 크기는 1~30 cm/sec의 범위를 보였고, 남쪽 수로에서 컸으며 만의 북부에서는 작았다. 조석잔차류로부터 유도된 상대와도를 통해 수 백 m에서 수 km 크기로 시계/반시계 방향으로 회전하는 와류를 확인했고, 죽도 주변에서 2쌍, 남부에서 형성된 3~4쌍의 강한 와류 특성을 파악했다.

Abstract AI-Helper 아이콘AI-Helper

This study is based on a series of numerical modeling experiments to understand the circulation and its change in the Chunsu Bay (CSB), Yellow Sea of Korea. A skill analysis was performed for the tidal height and tidal current of the observation data using the amplitude and phase of the 4 major tida...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • We intend to describe the results of intensive numerical modeling experiments in three separate papers in that in Paper 1, characteristics of tide and tidal current are analyzed in terms of tidal constituents; in Paper 2, the impact of summertime freshwater discharge on the modification of tidal current and its ellipse characteristics and change of 3D structure of salinity field; in Paper 3, the wind-driven current and its influence on the destratification of water column will be described. The objective of this paper is to analyze the characteristics of the tide, tidal current, and its residual current with associated vorticity field.

가설 설정

  • The pattern of tidal residual current can be summarized as follows. 1) The velocity range of the residual current in northern CSB is 1~7 cm/sec, and a large 10~30 cm / sec in the south. 2) Paired in clockwise/counter-clockwise direction, several tidal residual currents exist near Jukdo at the central CSB at a velocity of 5~15 cm/sec, and at the southern entrance to CSB at 20~30 cm/sec.
  • Tidal ellipse characteristics of CSB can be summarized as follows. 1) Tidal current is recti-linear with ratio of minor/major axis very small less than 0.2. 2) The orientation of the major axis was in north-south direction along the isobath.
  • 1) Tidal current is recti-linear with ratio of minor/major axis very small less than 0.2. 2) The orientation of the major axis was in north-south direction along the isobath. 3) Around the Jukdo island, the current pattern shows more elliptical shape.
  • 2) The orientation of the major axis was in north-south direction along the isobath. 3) Around the Jukdo island, the current pattern shows more elliptical shape. 4) The major axis of the M2 tidal constituent was approximately 2 times bigger than that of S2.
  • 3) Around the Jukdo island, the current pattern shows more elliptical shape. 4) The major axis of the M2 tidal constituent was approximately 2 times bigger than that of S2. To represent the tidal ellipse parameters in the CSB, ten grid points are selected (Fig.
본문요약 정보가 도움이 되었나요?

참고문헌 (36)

  1. Blumberg, A.F. and Mellor, G.L. (1987). A Descriptive of a Three Dimensional Coastal Ocean Circulation Model. p1-16. In: Three-dimensional Coastal Ocean Models, Coastal Estuarine Sci., vol. 4, ed by N.S. Heaps, AGU, Washington, D.C. 

  2. Cai, S., Huang, Q. and Long, X. (2003). Three-dimensional Numerical Model Study of the Residual Current in the South China Sea. Oceanol Acta, 26(5), 597-607. 

  3. Choi, Y.H. (2004). Development of Water Quality Prediction Model in Chunsu Bay. PhD thesis, Chungnam Natl Univ, 132P. 

  4. Dube, S.K., Rao, A.D., Shinha, P.C. and Jain, I. (1995). Implications of Climatic Variations in the Fresh Water Outflow in the Wind-induced Circulation of the Bay of Bengal. Atmospheric Env, 29(16), 2133-2138. 

  5. Foreman, M.G.G., Stucchi, D.J., Zhang, Y. and Baptista, A.M. (2006). Estuarine and Tidal Currents in the Broughton Archipelago. Atmos Ocean, 44(1), 47-63. 

  6. Goodrich, D., Boicourt, W., Hamilton, P. and Pritchard, D. (1987). Wind-induced Destratification in Chesapeake Bay. J Phys Oceanogr, 17, 2232-2240. 

  7. Guo, X. and Yanagi, T. (1996). Seasonal Variation of Residual Current in Tokyo Bay, Japan- diagnostic Numerical Experiments. J Oceanogr, 52, 597-616. 

  8. Guo, X. and Valle-Levinson, A. (2008). Wind Effects on the Lateral Structure of Density-driven Circulation in Chesapeake Bay. Cont Shelf Res, 28, 2450-2471. 

  9. Imasato, N. (1983). What is Tide-induced Residual current?, J Phy Oceanogr, 13, 1307-1317. 

  10. Jung, K.Y., Ro, Y.J. and Kim, B.J. (2011a). Numerical Modeling Experiments of Current Circulation in the Chunsu Bay, Yellow Sea, Korea during Summer Season. Proc of Spring Meeting, 2011 of the Korean Association of Ocean Sci and Tech Soc,146. 

  11. Jung, K.Y., Ro, Y.J. and Kim, B.J. (2011b). Impact of the Freshwater Release on the Tidal Circulation in the Chunsu Bay, Yellow Sea, Korea based on Numerical Model. Proc of PICES 2011 Annual Meeting Prog, 192. 

  12. Jung, K.Y., Ro, Y.J. and Kim, B.J. (2011c). Influence of Freshwater Release on the Current System in the Chunsu Bay, Yellow Sea, Korea during summer season. Proc of Autumn Meeting, 2011 of the Korean Soc of Oceanogr, 105-106. 

  13. Jung, K.Y., Ro, Y.J. and Kim, B.J. (2012a). Salinity Variation and Stratification caused by Freshwater Input in the Chunsu Bay, Yellow Sea, Korea during Summer Season. Proc of Spring Meeting, 2012 of the Korean Association of Ocean Sci and Tech Soc, 188. 

  14. Jung, K.Y., Ro, Y.J. and Kim, B.J. (2012b). Observation and Analysis of Hydrodynamic and Hydrography in the Chunsu Bay, Yellow Sea, Korea, 2010-2011. Proc of Spring Meeting, 2012 of the Korean Association of Ocean Sci and Tech Soc, 198. 

  15. Jung, K.Y., Ro, Y.J. and Kim, B.J. (2012c). Tracking Patterns of Freshwater from Kanwol/Bunamho based on Particle Trajectory Modeling Experiments in the Chunsu Bay, Yellow Sea, Korea. Proc of Autumn Meeting, 2011 of the Korean Soc of Oceanogr, 75-76. 

  16. Jung, K.Y., Ro, Y.J. and Kim, B.J. (2013a). Tidal and Sub-tidal Current Characteristics in the Central Part of Chunsu Bay, Yellow Sea, Korea during the Summer Season. 'The Sea' J Korean Soc of Oceanogr, 18(2), 53-64 

  17. Kashiwai, M. (1984). Tidal Residual Circulation Produced by a Tidal Vortex. Part1. Life-history of a Tidal Vortex. J Oceanogr Soc Japan, 40(6), 279-294. 

  18. Lee, J.S., Kim, K.H., Sim, J.H., Han, J.H., Choi, Y.H. and Khang, B.J. (2012). Massive Sedimentation of Fine Sediment with Organic Matter and Enhanced Benthic-pelagic Coupling by an Artificial Dyke in Semi-enclosed Chonsu Bay, Korea. Mar Pollut Bull, 64, 153-163. 

  19. Lee, T.W., Choi, M.S., Yang, S.Y., Ma, C.W., Ro, Y.J. and Park, S.C. (2011). A Study on the Environment Investigation and Fishery Utilization in the Chunsu Bay. Final Report, The Province of Chungcheongnam-do, 534P. 

  20. Lee, T.W. (1996). Change in Species Composition of Fish in Chonsu Bay 1.Demersal Fish. Korean J. of Fisheries and Aquatic Sci, 29(1), 71-83. 

  21. Lee, T.W., Moon, H.T. and Choi, S.S. (1997). Change in Species Composition of Fish in Chonsu Bay 2. Surf Zone Fish. J Ichthyological Soc of Korea, 9(1), 79-90. 

  22. Martin, J. and McCutcheon, S.C. (1999). Hydrodynamics and Transport for Water Quality Modeling. Lewis Publishers. 794P 

  23. Mastumoto, K., Takanezawa, T. and Ooe, M. (2000). Ocean Tide Models Developed by Assimilating TOPEX/POSEIDON Altimeter Data into Hydrodynamical Model: A Global Model and Regional Model Around Japan. J Oceanogr, 56, 567-581. 

  24. Maze, R., Langlois, G., Grosjean, F. (1998). Tidal Eulerian Residual Currents over a Slope, Analytical and Numerical Frictionless Models. J Phys Oceanogr, 28, 1321-1332. 

  25. Orlanski, I. (1976) A Simple boundary Condition for Unbounded Hyperbolic Flows. J Comut Phys, 21, 251-269. 

  26. Park K. and Oh J.H. (1998) Calibration and Verification of a Hydrodynamic Model in Chunsu Bay and Adjacent Coastal Water. J of Korean Soc of Coastal and Ocean Eng., 10(3) 109-119. 

  27. Pawlowicz, R., Beardsley, B. and Lentz, S. (2002). Classical Tidal Harmonic Analysis including Error Estimates in MATLAB using T_TIDE. Comput. Geosci., 28, 929-937. 

  28. Robinson, IS. (1981). Tidal Vorticity and Residual Circulation. Deep Sea Res, 28A(3), 195-212. 

  29. Robinson, IS. (1983). Tidally Induced residual Flows, In: Physical Oceanography of Coastal and Shelf Seas edited by B. Johns, 321-356, Elsevier, New York. 

  30. Signell, RP. and Harris, CK. (2000). Modeling Sand Bank Formation around Tidal Headlands. In: 6th International Conference of ASCE, New Orleans, LA, 3-5 Nov 1999, 209-222. 

  31. So, J.K., Jung, K.T. and Jang, W.C., (1998). Numerical Modeling of Tides and Tidal Currents Cuased by Embankment at Chunsu Bay. J of Korean Soc of Coastal and Ocean Eng., 10(4), 151-164. 

  32. Yanagi, T. (1983). General Mechanism of the Tidal Residual Circulation. J Oceanogr Soc Japan, 35(6), 241-252. 

  33. Yoo, I.H. (1992). Numerical Modeling of current and diffusion in Chunsu Bay. MS thesis, Chungnam Natl Univ, 64P. 

  34. Zhai, L., Sheng, J. and Greatbatch, R.J. (2008). Baroclinic Dynamics of Wind-driven Circulation in a Stratified Bay: A Numerical Study using Models of Varying Complexity. Cont Shelf Res, 28, 2357-2370. 

  35. Zimmerman, J. (1979). On the Euler-Lagrange Transformation and the Stoke's Drift in the Presence of Oscillatory and Residual Currents. Deep-Sea Res, 26A, 505-520. 

  36. Zimmerman, J. (1981). Dynamics, Diffusion and Geomorphological Significance of Tidal Residual Eddies. Nature, 290, 549-555. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로