$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

초록
AI-Helper 아이콘AI-Helper

본 연구는 느티나무 산지의 개엽 시기에 영향을 미치는 기후인자를 구명하기 위해 수행되었다. 이를 위해 2009년 국립산림과학원에서 조성한 강릉, 임실, 화성, 진주의 4개 산지시험림을 대상으로 개엽 시기를 조사하였다. 개엽시기 조사는 4~5월에 걸쳐 이루어졌으며 휴면 중이던 동아가 부풀어 오르면서 초록색이 처음 보이는 때를 개엽 개시일로 하였으며, 동아에서 잎이 나와 완전히 신장하여 펴진 시점을 개엽 완료일로 하였다. 분산분석을 실시한 결과, 개엽 개시일과 개엽 완료일 모두 조림지 간, 산지 간 그리고 조림지와 산지 간 상호작용에서 통계적으로 유의한 차이가 인정되었다. 개엽 시기에 영향을 미치는 조림지의 기후인자를 구명하기 위해 상관분석을 실시한 결과, 3~10월의 평균기온 또는 최고기온이 높고, 3~10월 또는 6~10월의 평균습도가 낮은 조림지에서 개엽이 빨리 이루어지는 것으로 나타났다. 조림지와 산지 간 기후인자의 차이가 개엽 시기에 미치는 영향을 구명하고자 기후인자에 대한 생태적 거리(=조림지-산지)를 구하여 공준상관 분석을 실시한 결과, 3~10월 최고기온, 연평균 최고기온, 3~10월 평균기온, 7~8월 최고기온, 6~10월 평균습도의 차이가 주요 인자로 나타났다. 결론적으로 느티나무는 조림지 보다 생육기의 평균 기온이 낮은 곳에서 온 산지가 개엽이 빨리 시작되는 경향으로 전형적인 북-남 또는 저온-고온 경사변이를 나타내느티나무 산지에 따른 지리적 변이가 존재함을 확인할 수 있었다. 마지막으로 이러한 연구결과를 느티나무 육종에 활용하기 위한 방안에 대해 고찰하였다.

Abstract AI-Helper 아이콘AI-Helper

This study was conducted to examine the geographic variation of bud phenology of Zelkova serrata provenances. Data were collected from Gangneung, Yilmsil, Hwaseong and Jinju plantations which were parts of the 6 provenance trials established by Korea Forest Research Institute in 2009. The 16 provena...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 결론적으로 느티나무는 조림지 보다 생육기의 평균 기온이 낮은 곳에서 온 산지가 개엽이 빨리 시작되는 경향으로 전형적인 북-남 또는 저온-고온 경사변이를 나타내 느티나무 산지에 따른 지리적 변이가 존재함을 확인할 수 있었다. 마지막으로 이러한 연구결과를 느티나무 육종에 활용하기 위한 방안에 대해 고찰하였다.
  • 본 연구는 느티나무 산지의 개엽 시기에 영향을 미치는 기후인자를 구명하기 위해 수행되었다. 이를 위해 2009년 국립산림과학원에서 조성한 강릉, 임실, 화성, 진주의 4개 산지시험림을 대상으로 개엽 시기를 조사하였다.
  • 이에 본 연구에서는 느티나무를 용재자원으로 육성하기 위한 연구의 일환으로 느티나무 산지의 지리적 변이 및 적응성 평가를 위해 산지 별 개엽 시기를 조사하고 개엽 시기에 영향을 미치는 조림지와 산지의 기후인자를 구명하고자 하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
임목은 어떤 한계가 있는가? 전통적으로 산지 시험은 조림지에 적합한 종자 산지를 선택하기 위한 임목육종의 수단 중 하나로 이용되어 왔지만(Campbell and Sorensen, 1978; Raymond and Lindgren, 1990; Rehfeldt, 1989), 지구온난화가 국제적 이슈로 부각되면서 기후변화 적응을 위한 미래 기후조건에 적응성이 높은 종자 산지의 선정이라는 측면이 더 강조되고 있다(Mátyás, 1996; Carter, 1996). 특히, 임목은 조림에서 수확까지 장기간이 소요되기 때문에 농작물처럼 단기간에 기후변화에 적응하는데 한계가 있어 미래 기후조건에 적합한 종자산지 선정은 임업의 성패를 결정짓는 중요한 문제로 부각되고 있다(Leites et al., 2012).
느티나무의 변재 및 심재는 어떤 색을 가지고 있는가? 느티나무(Zelkova serrata)는 평안남도 이하 우리나라 전역과 일본, 대만, 중국 등지에 자생하는 활엽수 종으로 변재가 황백색이고 심재가 적갈색으로 광택이있으며, 목리가 아름다워 예로부터 건축재, 가구재, 기구재, 기계재, 조각재, 악기재 등으로 널리 이용되어왔다(Korea Forest Research Institute, 2007). 이처럼 용재자원으로써 느티나무의 우수성은 예로부터 인정되어 왔지만 이를 적극적으로 자원화하여 용재수로 활용 하기 위한 연구보다는 조경수 품종개발 연구가 주로 이루어져 왔다(Park, 1998).
전통적인 산지 시험의 주된 관심사는 어떤 것이었는가? 이러한 흐름에 따라 전통적인 산지시험의 주된 관심사였던 수고, 흉고직경, 재적 등 생장관련 형질과 함께 최근에는 개엽 시기, 동아 형성 시기와 같은 기후변화 적응 관련 형질들이 다시 주목 받고 있으며, 이러한 형질들에 영향을 미치는 기후인자를 구명하기 위한 연구가 활발하게 이루어지고 있다(Cannell et al., 1976; Beuker, 1994; Kadomatsu, 1997; Bradley et al.
질의응답 정보가 도움이 되었나요?

참고문헌 (31)

  1. Bailey, J. D., and C. A. Harrington, 2006: Temperature regulation of bud-burst phenology within and among years in a young Douglas-fir (Pseudotsuga menziesii) plantation in western Washington, USA. Tree Physiology 26(4), 421-430. 

  2. Beuker, E., 1994: Adaptation to climatic changes of the timing of bud burst in populations of Pinus sylvestris L. and Picea abies (L.) Karst. Tree Physiology 14, 961-970. 

  3. Bradley, N. L., A. C. Leopold, J. Ross, and W. Huffaker, 1999: Phenological changes reflect climate change in Wisconsin. Proceedings of the National Academy of Sciences of United States of America 96(17), 9701-9704. doi:10.1073/pnas.96.17.9701 

  4. Campbell, R. K., and F. C. Sorensen, 1978: Effect of test environment on expression of clines and on delimitation of seed zones in Douglas-fir. Theoretical and Applied Genetics 51, 233-246. 

  5. Cannell, M. G. R., S. Thompson, and R. Lines, 1976: An analysis of inherent differences in shoot growth within some north temperate conifers. In: Tree Physiology and Yield Improvement. Cannell, M. G. R. and F. T. Last (eds.) Academic Press Inc., New York, 173-205. 

  6. Carter, K. K., 1996: Provenance tests as indicators of growth response to climate change in 10 north temperate tree species. Canadian Journal of Forest Research 26, 1089-1095. 

  7. Chumura, D. J., and R. Rozkowski, 2002: Variability of beech provenances in spring and autumn phenology. Silvae Genetica 51, 123-127. 

  8. Csaba, M., 1995: Modeling effects of climate change with provenance test data by applying ecological distances. Proceeding of Caring for the Forest: Research in a Changing World: IUFRO XX World Congress 6-12 August 1995, Tampere, Finland. Finnish IUFRO World Congress Organising Committee, 145pp. 

  9. Hannerz, M., 1999: Evaluation of temperature models for predicting bud burst in Norway spruce. Canadian Journal of Forest Research 29(1), 9-19. 

  10. Harrington, C. A., P. J. Gould, and J. B. St. Clair, 2010: Modeling the effect of winter environment on dormancy release of Douglas-fir. Forest Ecology and Management 259(4), 798-808. 

  11. Kadomatsu, M., 1997: Differences in phenology of Quercus collected from northeastern China, eastern Hokkaido and western Honshu. Research Bulletin of Hokkaido University Forests 54(2), 188-201. 

  12. Kang, K. H., Y. J. Chong, and H. N. Kim, 1999: The genetic relationship of Zelkova serrata registered as the monument using RAPD markers. Korean Journal of Environmental Biology 17(1), 89-94. (in Korean with English abstract) 

  13. Kim, I. S., K. O. Ryu, T. S. Kim, and J. K. Park, 2005: Climatic factors affecting bud flushing of Quercus acutissima Car. provenances in Korea. Proceeding of the International Symposium on Plant Genetic Resources and Annual Meeting of the Korean Breeding Society and the Korean Academy of Native Species ""Understanding of ITPGRFA Trends of Researches on Plant Genetic Resources"", Jeju, Korea. 150pp. 

  14. Kim, I. S., H. Y. Kwon, K. O. Ryu, and H. S. Choi, 2010: Variation of leaf morphology among 18 populations of Zelkova serrata Mak. Korean Journal of Breeding Science 42(1) 40-49. (in Korean with English abstract) 

  15. Kim, I. S., K. O. Ryu, and J. H. Lee, 2012: Climatic factors affecting bud flush timing of Pinus densiflora provenances. Korean Journal of Agricultural and Forest Meteorology 14(4), 229-235. (in Korean with English abstract) 

  16. Korea Forest Research Institute, 2007: 100 Useful Tree Species in Korea. New Research Book No. 21. Korea Forest Research Institute. 40-43. 

  17. Leinonen, I., and H. Hanninen, 2002: Adaptation of the timing bud burst of Norway spruce to temperate and boreal climates. Silva Fennica 36(3), 695-701. 

  18. Leites, L. P., G. E. Rehfeldt, A. P. Robinson, N. L. Crookston, and B. Jaquish, 2012: Possibilities and limitations of using historic provenance tests to infer forest species growth responses to climate change. Natural Resource Modeling 25(3), 409-433. doi: 10.1111/j.1939-7445.2012.00129.x 

  19. Matteo, G., M. Riccardi, F. Righi, and E. Fusaro, 2012: Inter- and intraspecific variations in bud phenology, foliar morphology, seasonal stomatal conductance and carbon isotopic composition in Cedrus libani and C. atlantica. Trees 26, 1161-1167. doi: 10.1007/s00468-012-0692-9 

  20. Matyas, C., 1996: Climatic adaptation of trees: rediscovering provenance tests. Euphytica 92, 45-54. 

  21. Muona, O., 1990: Population genetics in forest tree improvement. Plant population genetics, breeding, and genetic resources. Brown, A. H. D., M. T. Clegg, A. L. Kahler and B. S. Weir (eds). Sinauer Associates Inc., Sunderland, Massachusetts, 282-298. 

  22. Noh, E. R., 1988: Evaluation of optimum growth and site conditions for major tree species of Korea using climatic factors. Research Report of Institute of Forest Genetics, Korea 24, 138-191. (in Korean with English abstract) 

  23. Park, H. S., 1998: A study on the development of new cultivar showing either yellow or red leaf fall color in Zelkova serrata Makino. The Ph D. Thesis, Sungkyunkwan University, 87pp. (in Korean with English abstract) 

  24. Raymond, C. A., and D. Lindgren. 1990: Genetic flexibility--a model for determining the range of suitable environments for a seed source. Silvae Genetica 39, 112-120. 

  25. Rehfeldt, G. E., 1989: Ecological adaptations in Douglasfir (Pseudotsuga menziesii var. glauca): a synthesis. Forest Ecology and Management 28(3-4), 203-215. 

  26. Rehfeldt, G. E., N. M. Tchebakova, and L. K. Barnhardt, 1999: Efficacy of climate transfer functions: introduction of Eurasian populations of Larix into Alberta. Canadian Journal of Forest Research 29(11), 1660-1668. 

  27. Sakai, A., and W. Larcher, 1987: Frost Survival of Plants: responses and adaptation to freezing stress. Springer-Verlag, Berlin. 321pp. 

  28. Sjoskog, M. S., 2011: Local variation in mountain birch spring phenology along an altitudinal gradient in northern coastal Fennoscandia. Master's thesis, University of Tromso, Norway, 30pp. 

  29. Sparks, T. H., and A. Menzel, 2002: Observed changes in seasons: an overview. International Journal of Climatology 22, 1715-1725. doi: 10.1002/joc.821 

  30. Wesolowski, T. and P. Rowinski, 2006: Timing of bud burst and tree-leaf development in a multispecies temperate forest. Forest Ecology and Management 237(1-3), 387-393. 

  31. Wright, J. W., 1976: Introduction to Forest Genetics. Academic Press, Inc. London, 463pp. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로