$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Improved Methodology for Identification of Cryptomonads: Combining Light Microscopy and PCR Amplification 원문보기

Journal of microbiology and biotechnology, v.23 no.3, 2013년, pp.289 - 296  

Xia, Shuang (Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences) ,  Cheng, Yingyin (Center for Water Environment and Human Health, Institute of Hydrobiology, Chinese Academy of Sciences) ,  Zhu, Huan (Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences) ,  Liu, Guoxiang (Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences) ,  Hu, Zhengyu (Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences)

Abstract AI-Helper 아이콘AI-Helper

Cryptomonads are unicellular, biflagellate algae. Generally, cryptomonad cells cannot be preserved well because of their fragile nature, and an improved methodology should be developed to identify cryptomonads from natural habitats. In this study, we tried using several cytological fixatives, includ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

대상 데이터

  • Cryptomonas pyrenoidifera was collected from a eutrophic fishpond (30°31'47''N, 114°21'16''E), where it bloomed.
  • Samples of Campylomonas reflexa were collected from Lake Nanhu (30°29'46''N, 114°20'12''E) in the city of Wuhan.
  • Samples of seven cryptomonad species were used in the present study. Samples were collected by phytoplankton nets from various kinds of water bodies in Hubei Province of China from January 2009 to July 2012. Samples of Campylomonas reflexa were collected from Lake Nanhu (30°29'46''N, 114°20'12''E) in the city of Wuhan.
  • The fixatives were prepared just before use. The samples of Campylomonas reflexa were used. After 24 h of fixation, cells were observed and counted under light microscopy.
  • The effects of buffers and osmotic adjustments were evaluated (Experiment C). Two buffers were tested: PBS (final concentration of 0.1 M, pH 7.2) and HEPES (Calbiochem; final concentration of 30 mM). Two osmotic adjustments were tested: sorbitol and sucrose (Sinopharm Chemical Reageal Company; saturated).
  • was collected from the reservoir of the Three Gorges Dam (31°07'21''N, 110°47'01''E), where it bloomed and the water presented a red-brown color.
  • were collected from Lake Donghu (30°32'55''N, 114°21'16''E).

데이터처리

  • To evaluate cell lysis caused by fixation, the cells were observed and counted for 53 days. ANOVA was carried out to test the difference in cell densities among the days.
  • One-way analysis of variance (ANOVA) was carried out to test the difference in cell densities among the treatments with a discrimination level of p < 0.05.

이론/모형

  • 83) [43]. The alignments were refined manually by MEGA (ver. 4.0) [42], and phylogenetic trees were constructed using the neighbor-joining (NJ) method in the same software. Bootstrap analyses with 1,000 replicates were calculated to estimate statistical reliability.
본문요약 정보가 도움이 되었나요?

참고문헌 (48)

  1. Andreoli, C., C. Tolomio, N. Rascio, and R. Talarico. 1986. Some observations on a Cryptophyceae responsible for a winter red bloom. G. Bot. Ital. 120: 70-71. 

  2. Andersen, R. A. 1992. Diversity of eukaryotic algae. Biodivers. Conserv. 1: 267-292. 

  3. Auinger, B. M., K. Pfandl, and J. Boenigk. 2008. Improved methodology for identification of protists and microalgae from plankton samples preserved in Lugol's iodine solution: Combining microscopic analysis with single-cell PCR. Appl. Environ. Microbiol. 74: 2505-2510. 

  4. Barone, R. and L. Naselli-Flores. 2003. Distribution and seasonal dynamics of cryptomonads in Sicilian water bodies. Hydrobiologia 502: 325-329. 

  5. Brett, S. J., L. Perasso, and R. Wetherbee. 1994. Structure and development of the cryptomonad periplast: A review. Protoplasma 181: 106-122. 

  6. Cavalier-Smith, T., J. A. Couch, K. E. Thorsteinsen, P. Gilson, J. A. Deane, D. R. A. Hill, and G. I. McFadden. 1996. Cryptomonad nuclear and nucleomorph 18S rRNA phylogeny. Eur. J. Phycol. 31: 315-328. 

  7. Clay, B. L., P. Kugrens, and R. E. Lee. 1999. A revised classification of Cryptophyta. Bot. J. Lin. Soc. 131: 131-151. 

  8. Corrado, O. J., J. Osman, and R. J. Davies. 1986. Asthma and rhinitis after exposure to glutaraldehyde. Hum. Toxicol. 5: 325-328. 

  9. Dame, R., M. Alber, D. Allen, M. Mallin, C. Montague, A. Lewitus, et al. 2000. Estuaries of the South Atlantic coast of North America: Their geographical signatures. Estuar. Coast. 23: 793-819. 

  10. De Giorgi, C., M. F. Sialer, and F. Lamberti. 1994. Formalininduced infidelity in PCR-amplified DNA fragments. Mol. Cell. Probes 8: 459-462. 

  11. Deane, J. A., I. M. Strachan, G. M. Saunders, D. R. A. Hill, and G. I. McFadden. 2002. Cryptomonad evolution: Nuclear 18S rDNA phylogeny versus cell morphology and pigmentation. J. Phycol. 38: 1236-1244. 

  12. Doughty, M. J., J. P. Bergmanson, and Y. Blocker. 1995. Impact of glutaraldehyde versus glutaraldehyde-formaldehyde fixative on cell organization in fish corneal epithelium. Tissue Cell 27: 701-712. 

  13. Douglas, M. P. and S. O. Rogers. 1998. DNA damage caused by common cytological fixatives. Mutat. Res. 401: 77-88. 

  14. Doyle, J. J. and E. E. Dickson. 1987. Preservation of plant samples for DNA restriction endonuclease analysis. Taxon 36: 715-722. 

  15. Gillot, M. 1990. Phylum Cryptophyta (Cryptomonads), pp. 139-151. In L. Margulis, J. O. Corliss, M. Melkonian, and D. J. Chapman (eds.). Handbook of Protoctista. Jones Bartlett Publishers, Boston. 

  16. Godhe, A., D. M. Anderson, and A. Rehnstam-Holm. 2002. PCR amplification of microalgal DNA for sequencing and species identification: Studies on fixatives and algal growth stages. Harmful Algae 1: 375-382. 

  17. Hansen, K. S. 1983. Glutaraldehyde occupational dermatitis. Contact Derm. 9: 81-82. 

  18. Hill, D. R. A. 1991. A revised circumscription of Cryptomonas (Cryptophyceae) based on examination of Australian strains. Phycologia 30: 170-188. 

  19. Hoef-Emden, K. 2007. Revision of the genus Cryptomonas (Cryptophyceae) II: Incongruences between the classical morphospecies concept and molecular phylogeny in smaller pyrenoid-less cells. Phycologia 46: 402-428. 

  20. Hoef-Emden, K., B. Marin, and M. Melkonian. 2002. Nuclear and nucleomorph SSU rDNA phylogeny in the Cryptophyta and the evolution of cryptophyte diversity. J. Mol. Evol. 55: 161-179. 

  21. Hoef-Emden, K. and M. Melkonian. 2003. Revision of the genus Cryptomonas (Cryptophyceae) I: A combination of molecular phylogeny and morphology provides insights into a long hidden dimorphism. Protist 154: 371-409. 

  22. Hotzel, G. and R. Croome. 1999. A Phytoplankton Methods Manual for Australian Freshwaters. Land and Water Resources Research and Development Corporation, Green Words & Images, Canberra. 

  23. Jordan, W. P., M. V. Dahl, and H. L. Albert. 1972. Contact dermatitis from glutaraldehyde. Arch. Dermatol. 105: 94-95. 

  24. Katano, T., M. Yoshida, J. Lee, M. S. Han, and Y. Hayami. 2009. Fixation of Chattonella autiqua and C. marina (Raphidophyceae) using Hepes-buffered paraformaldehyde and glutaraldehyde for flow cytometry and light microscopy. Phycologia 48: 473-479. 

  25. Klaveness, D. 1988. Ecology of the Cryptomonadida: A first review. pp. 105-133. In C. D. Sandgren (ed.). Growth and Reproductive Strategies of Freshwater Phytoplankton. Cambridge University Press, New York. 

  26. Klaveness, D. 1988. Biology and ecology of the Cryptophyceae: Status and challenges. Biol. Oceanogr. 6: 257-270. 

  27. Kugrens, P. and B. L. Clay. 2003. Cryptomonads, pp. 715-755. In J. D. Wehr and R. G. Sheath (eds.). Freshwater Algae of North America. Academic Press, San Diego. 

  28. Leakey, R. J. G., P. K. Burkhill, and M. A. Sleigh. 1994. A comparion of fixatives for the estimation of abundance and biovolume of marine planktonic ciliate populations. J. Plankton Res. 16: 375-389. 

  29. Marin, I., A. Aguilera, B. Reguera, and J. P. Abad. 2001. Preparation of DNA suitable for PCR amplification from fresh or fixed single dinoflagellate cells. Biotechniques 30: 88-90. 

  30. McFadden, G. I. and M. Melkonian. 1986. Use of Hepes buffer for microalgal culture media and fixation for electron microscopy. Phycologia 25: 551-557. 

  31. Menden-Deuer, S., E. J. Lessard, and J. Satterberg. 2001. Effect of preservation on dinoflagellate and diatom cell volume and consequences for carbon biomall predictions. Mar. Ecol. Prog. Ser. 222: 41-50. 

  32. Menezes, M. and G. Novarino. 2003. How diverse are planktonic cryptomonads in Brazil? Advantages and difficulties of a taxonomic-biogeographical approach. Hydrobiologia 502: 297-306. 

  33. Monsan, P., G. Puzo, and H. Marzarguil. 1975. Etude du mecanisme d'etablissement des liaisons glutaraldehyde-proteines. Biochimie 57: 1281-1292. 

  34. Nishijima, T. 1990. Growth characteristics of Plagioselmis sp. (strain 87) causing freshwater red tide in the lower part of the Nakasuji River, Japan. Nippon Suisan Gakkaishi. 56: 353-359. 

  35. Novarino, G. A. 2003. Companion to the identification of cryptomonad flagellates (Cryptophyceae, cryptomonadea). Hydrobiologia 502: 225-270. 

  36. Paljarvi, L., J. H. Garcia, and H. Kalimo. 1979. The efficiency of aldehyde fixation for electron microscopy: Stabilization of rat brain tissue to withstand osmotic stress. Histochem. J. 11: 267-276. 

  37. Reynolds, C. S. 1978. Notes on the phytoplankton periodicity of Rostherne Mere, Cheshire, 1967-1977. Br. Phycol. J. 13: 329-335. 

  38. Richlen, M. and P. Barber 2005. A technique for the rapid extraction of microalgal DNA from single live and preserved cells. Mol. Ecol. Notes 5: 688-691. 

  39. Santore, U. J. 1984. Some aspects of taxonomy in the Cryptophyceae. New Phycol. 98: 627-646. 

  40. Shiozawa, D., J. Kudo, R. P. Evans, S. R. Woodward, and R. N. Williams. 1992. DNA extraction from preserved trout tissues. West. N. Am. Naturalist 52: 29-34. 

  41. Stoecker, D. K., D. J. Gifford, and M. Putt. 1994. Preservation of marine planktonic ciliates: Losses and cell shrinkage during fixation. Mar. Ecol. Prog. Ser. 110: 293-299. 

  42. Tamura, K., J. Dudley, M. Nei, and S. Kumar. (2007). MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599. 

  43. Thompson, J. D., T. J. Gibson, F. Plewniak, and D. G. Higgins. 1997. The CLUSTAL_X Windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882. 

  44. Throndsen J. 1978. Preservation and storage, pp. 69-74. In A. Sournia (ed.). Phytoplankton Manual. United Nations Educational, Scientific and Cultural Organization, Paris. 

  45. Voo, K. S. and M. Britta. 1998. Extraction and amplifi-cation of mitochondrial DNA from formalin-fixed deep-sea mollusks. Biotechniques 24: 243-247. 

  46. Wiggins, P., S. A. McCurdy, and W. Zeidenberg. 1989. Epistaxis due to glutaraldehyde exposure. J. Occup. Med. 31: 854-856. 

  47. Williams, C., F. Ponten, C. Moberg, P. Soderkvist, M. Uhlen, J. Ponten, et al. 1999. A high frequency of sequence alterations is due to formalin fixation of archival specimens. Am. J. Pathol. 155: 1467-1471. 

  48. Woelfl, S. and B. A. Whitton. 2000. Sampling, preservation and quantification of biological samples from highly acidic environments ( $pH{\leq}3$ ). Hydrobiologia 433: 173-180. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로